Chapter 11

Fourier Analysis of Discrete-time Signals and Systems

11.1 Basic Problems

11.1 The DTFT of $x[n]=0.5^{|n|}$ is

$$
X\left(e^{j \omega}\right)=\frac{3 / 4}{5 / 4-\cos (\omega)}
$$

(a) If we let $\omega=0$ then

$$
X(1)=\frac{3 / 4}{5 / 4-1}=3=\sum_{n} x[n]
$$

(b) The inverse DTFT is

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

if we let $n=0$ we get that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega=x[0]
$$

and so the given integral is $2 \pi x[0]=2 \pi$.
(c) From the DTFT, $X\left(e^{j \omega}\right)$ is real and since the denominator, i.e., $5 / 4-\cos (\omega)$, is positive for $[-\pi, \pi)$ the phase $\angle X\left(e^{j \omega}\right)=0$.
(d) If we let $\omega=\pi$ in the DTFT we obtain

$$
\sum_{n} x[n](-1)^{n}=X\left(e^{j \pi n}\right)=\frac{3 / 4}{9 / 4}=\frac{1}{3}
$$

11.2 (a) We have
i. DTFT

$$
X\left(e^{j \omega}\right)=\sum_{n=-2}^{2} e^{-j \omega n}=1+2 \cos (\omega)+2 \cos (2 \omega)
$$

ii. Z-transform

$$
\begin{aligned}
& X(z)=z^{2}+z+1+z^{-1}+z^{-2} \quad \text { ROC }|z|>0 \\
& X\left(e^{j \omega}\right)=\left.X(z)\right|_{z=e^{j \omega}} \quad \text { ROC includes UC }
\end{aligned}
$$

which coincides with the previous result.
iii. $X\left(e^{j 0}\right)=\sum_{n=-2}^{2} 1=5$
(b) Problem 2(b)

We have

$$
X(z)=\sum_{n=-\infty}^{0} \alpha^{n} z^{-n}=\sum_{m=0}^{\infty} \alpha^{-m} z^{m}=\frac{1}{1-z / \alpha}, \quad \text { ROC }:|z|<\alpha
$$

so ROC must include the unit circle (UC) and as such $\alpha>1$.
(c) Problem 2(c)
i. Z-transforms

$$
\begin{aligned}
& X_{1}(z)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n}=\frac{1}{1-0.5 z^{-1}}=\frac{z}{z-0.5} \quad|z|>0.5 \\
& X_{2}(z)=-\sum_{n=-\infty}^{-1}\left(\frac{1}{2}\right)^{n} z^{-n}=-\sum_{m=0}^{\infty} 2^{m} z^{m}+1=\frac{z}{z-0.5} \quad|z|<0.5
\end{aligned}
$$

ii. Since the ROC $X_{1}(z)$ includes the UC then $X_{1}\left(e^{j \omega}\right)=\left.X_{1}(z)\right|_{z=e^{j \omega}}$.

11.3 Writing

$$
t[n]=\sum_{k=-2}^{2}(3-|k|) \delta[n-k]=3 \delta[n]+\sum_{k=1}^{2}(3-k)(\delta[n+k]+\delta[n-k])
$$

$A_{k}=3-|k|$, for $-2 \leq k \leq 2,0$ otherwise.
The Z-transform of $t[n]$ is

$$
T(z)=3+\sum_{k=1}^{2}(3-k)\left(z^{k}+z^{-k}\right)
$$

so that the DTFT is

$$
\begin{aligned}
T\left(e^{j \omega}\right) & =3+\sum_{k=1}^{2}(3-k)\left[e^{j \omega k}+e^{-j \omega k}\right] \\
& =\underbrace{3}_{B_{0}}+\sum_{k=1}^{2} \underbrace{2(3-k)}_{B_{k}} \cos (k \omega)
\end{aligned}
$$

for $k>2, B_{k}=0$.
11.4 (a) Impulse response

$$
h[n]=\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} e^{j \omega n} d \omega= \begin{cases}0.5 & n=0 \\ \sin (\pi n / 2) /(\pi n) & n \neq 0\end{cases}
$$

$h[n]$ is non-causal as $h[n] \neq 0$ for $n<0$.
(b) $Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)=H\left(e^{j \omega}\right)$ so $y[n]=h[n]$
(c) Yes, $H\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) H\left(e^{j \omega}\right)$ so $h[n]=(h * h)[n]$.
11.5 (a) The DTFT of $x[n]=e^{j \theta} \delta[n+\tau]+e^{-j \theta} \delta[n-\tau]$ is

$$
X\left(e^{j \omega}\right)=e^{j \theta} e^{j \omega \tau}+e^{-j \theta} e^{-j \omega \tau}=2 \cos (\omega \tau+\theta)
$$

by duality $\left(\omega \rightarrow n, \tau \rightarrow \omega_{0}\right) \quad$ mistake (cf table): $\exp (-j$ theta) delta(omega+omega_0) $+\ldots$

$$
\cos \left(n \omega_{0}+\theta\right) \leftrightarrow \pi\left[e^{j \theta} \delta\left(\omega+\omega_{0}\right)+e^{-j \theta} \delta\left(\omega-\omega_{0}\right)\right]
$$

For $\theta=0$

$$
\cos \left(n \omega_{0}\right) \leftrightarrow \pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right]
$$

For $\theta=\pi / 2$
minus-sign missing: $\cos (\mathrm{n}$ omega_0+pi/2) $=-\sin (\mathrm{n}$ omega_0)

$$
\cos \left(n \omega_{0}+\pi / 2\right)=\sin \left(n \omega_{0}\right) \leftrightarrow \pi\left[j \delta\left(\omega+\omega_{0}\right)-j \delta\left(\omega-\omega_{0}\right)\right]
$$

(b) Replacing DTFT of cosine terms

$$
X_{1}\left(e^{j \omega}\right)=2 \pi \delta(\omega)+\sum_{k=1}^{5} A_{k} \pi\left[e^{j \theta_{k}} \delta\left(\omega+k \omega_{0}\right)+e^{-j \theta_{k}} \delta\left(\omega-k \omega_{0}\right)\right]
$$

11.6 (a) We have

$$
h_{1}[n]=h[n]\left(1+e^{j \pi n}\right)=h[n]+h[n] e^{j \pi n}= \begin{cases}2 h[n] & n \text { even } \\ 0 & \text { otherwise }\end{cases}
$$

so

$$
H_{1}\left(e^{j \omega}\right)=H\left(e^{j \omega}\right)+H\left(e^{j(\omega+\pi)}\right)
$$

thus since $H\left(e^{j \omega}\right)$ corresponds to a LPF then $H_{1}\left(e^{j \omega}\right)$ is a band-eliminating filter. Sketch its frequency response to verify it.
(b) i. Using DTFT

$$
H\left(e^{j 0}\right)=\sum_{n=-\infty}^{\infty} h[n]=\frac{0.75}{1.25-1}=3
$$

ii. Using IDTFT

$$
\begin{aligned}
h[-n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} H\left(e^{j \omega}\right) e^{-j \omega n} d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H\left(e^{-j \omega}\right) e^{-j \omega n} d \omega \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} H\left(e^{j \omega^{\prime}}\right) e^{j \omega^{\prime} n} d \omega^{\prime}=h[n]
\end{aligned}
$$

where $\omega^{\prime}=-\omega$.
iii. The denominator $1.25-\cos (\omega)$ of $H\left(e^{j \omega}\right)$ is positive for $(-\pi, \pi]$, so $H\left(e^{j \omega}\right)$ is real and positive, with zero phase.
11.7 (a) (a) (b) DTFT

$$
X\left(e^{j \omega}\right)=1-e^{-j 2 \omega}=2 j e^{-j \omega} \sin (\omega)
$$

Yes, $X\left(e^{j \omega}\right)$ is periodic of period 2π since $\omega+2 k \pi=\omega .\left|X\left(e^{j \omega}\right)\right|=2|\sin (\omega)|$ is periodic of

Figure 11.1: Problem 7: Magnitude and phase of $X\left(e^{j \omega}\right)$
period π, but also periodic of period 2π.
(b) Phase

$$
\angle X\left(e^{j \omega}\right)= \begin{cases}-\omega+\pi / 2 & \text { if } \sin (\omega)>0 \\ -\omega+3 \pi / 2=-\omega-\pi / 2 & \text { if } \sin (\omega) \leq 0\end{cases}
$$

and because of the odd symmetry of the phase it is zero at $\omega=0$. See Fig. 11.1.
11.9 (a) If $\hat{H}\left(e^{j \omega}\right)=A\left[u\left(\omega+\omega_{0}\right)-u\left(\omega-\omega_{0}\right)\right]$ with zero phase. To determine A and ω_{0} find the impulse response

$$
\hat{h}[n]=\frac{A}{2 \pi} \int_{-\omega_{0}}^{\omega_{0}} e^{j \omega n} d \omega=\frac{A}{\pi n} \sin \left(\omega_{o} n\right)
$$

so $\omega_{0}=\pi / 3$ and $A=1$ and since $h[n]=\hat{h}[n-10]$ we have

$$
H\left(e^{j \omega}\right)=e^{-j 10 \omega} \hat{H}\left(e^{j \omega}\right)=e^{-j 10 \omega}[u(\omega+\pi / 3)-u(\omega-\pi / 3)]
$$

so the magnitude and phase responses are

$$
\begin{aligned}
& \left|H\left(e^{j \omega}\right)\right|= \begin{cases}1 & -\pi / 3 \leq \omega \leq \pi / 3 \\
0 & \text { otherwise in }-\pi<\omega \leq \pi\end{cases} \\
& \angle H\left(e^{j \omega}\right)=-10 \omega \quad-\pi<\omega \leq \pi
\end{aligned}
$$

(b) $X\left(e^{j \omega}\right)=e^{-j \omega}+\pi \delta(\omega+\pi / 5)+\pi \delta(\omega-\pi / 5)$ then

$$
\begin{aligned}
Y\left(e^{j \omega}\right) & =X\left(e^{j \omega}\right) H\left(e^{j \omega}\right) \\
& =H\left(e^{j \omega}\right) e^{-j \omega}+\pi H\left(e^{-j \pi / 5}\right) \delta(\omega+\pi / 5)+\pi H\left(e^{j \pi / 5}\right) \delta(\omega-\pi / 5) \\
& =H\left(e^{j \omega}\right) e^{-j \omega}+\pi e^{j 10 \pi / 5} \delta(\omega+\pi / 5)+\pi e^{-j 10 \pi / 5} \delta(\omega-\pi / 5) \\
& =H\left(e^{j \omega}\right) e^{-j \omega}+\pi \delta(\omega+\pi / 5)+\pi \delta(\omega-\pi / 5)
\end{aligned}
$$

and

$$
y[n]=h[n-1]+\cos (\pi n / 5) \quad-\infty<n<\infty
$$

Copyright 2014, Elsevier, Inc. All rights reserved.
11.10 (a) The Z-transform

$$
X(z)=\frac{1}{1-\beta z^{-1}}|z|>|\beta|
$$

So when $\beta \geq 1$ the region of convergence does not include the unit circle so the DTFT $X\left(e^{j \omega}\right)$ cannot be found. If $\beta<1$, the ROC includes the UC and

$$
X\left(e^{j \omega}\right)=\left.X(z)\right|_{z=e^{j \omega}}
$$

(b) We have
i. The inverse is

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \delta(\omega) e^{j \omega n} d \omega=\frac{1}{2 \pi}
$$

ii. The inverse is

$$
x_{1}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \delta(\omega-\pi) e^{j \omega n} d \omega=\frac{(-1)^{n}}{2 \pi}
$$

iii. $\delta(\omega)=\delta(-\omega)$ so $x_{2}[n]=2 x[n]=1 / \pi$.
(c) Yes, cross-multiplying

$$
\left(1+e^{-j \omega}+\cdots+e^{-j \omega(N-1)}\right)\left(1-e^{-j \omega}\right)=1-e^{-j \omega N}
$$

when $N=1$ we get an identity, $1=\left(1-e^{-j \omega}\right) /\left(1-e^{-j \omega}\right)$.
11.11 (a) Frequency response

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=\frac{e^{-j \omega}}{3}(1+2 \cos (\omega)) \\
& \left|H\left(e^{j \omega}\right)\right|=\left|\frac{1+2 \cos (\omega)}{3}\right| \\
& \angle H\left(e^{j \omega}\right)= \begin{cases}-\omega & 1+2 \cos (\omega) \geq 0 \\
-\omega+\pi & 1+2 \cos (\omega)<0\end{cases}
\end{aligned}
$$

(b) Poles and zeros

$$
H(z)=\frac{z^{2}+z+1}{3 z^{2}}=\frac{(z+0.5)^{2}+3 / 4}{3 z^{2}}
$$

Poles: $z=0$ double, zeros: $z_{1,2}=-0.5 \pm j \sqrt{3} / 2$
the poles are at the origin and the zeros on the unit circle $\left(\left|z_{1,2}\right|=1\right.$. The ROC is the whole Z-plane except for $z=0$.
(c) If $1+2 \cos \left(\omega_{0}\right)=0$, then the magnitude is zero and this happens at $\omega_{0}=\cos ^{-1}(-0.5)$
(d) Because the zeros are on the unit circle the difference between discontinuities in the wrapped phase is not 2π, so unwrapping would not change the phase.
11.12 (a) Frequency response

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=e^{-j 2 \omega}(1.2+\cos (\omega)) \\
& \angle H\left(e^{j \omega}\right)=-2 \omega \text { linear, as } 1.2+\cos (\omega)>0 \omega \in(-\pi, \pi]
\end{aligned}
$$

(b) Impulse response

$$
H(z)=\underbrace{0.5}_{h[1]} z^{-1}+\underbrace{1.2}_{h[2]} z^{-2}+\underbrace{0.5}_{h[3]} z^{-3}
$$

$h[n]$ is symmetric with respect to $n=2$, so the phase is linear.

