Chapter 1

Continuous-time Signals

1.1 Basic Problems

1.1 Notice that $0.5[x(t)+x(-t)]$, the even component of $x(t)$, is discontinuous at $t=0$, it is 1 at $t=0$ but 0.5 at $t \pm \epsilon$ for $\epsilon \rightarrow 0$. Likewise the odd component of $x(t)$, or $0.5[x(t)-x(-t)]$, must be zero at $t=0$ so that when added to the even component one gets $x(t)$. $z(t)$ equals $x(t)$. See Fig. 1 .

$$
0.5[x(t)-x(-t)]
$$

Figure 1.1: Problem 1
1.2 (a) If $x(t)=t$ for $0 \leq t \leq 1$, then $x(t+1)$ is $x(t)$ advanced by 1 , i.e., shifted to the left by 1 so that $x(0)=0$ occurs at $t=-1$ and $x(1)=1$ occurs at $t=0$.

Figure 1.2: Problem 2: Original signal $x(t)$, shifted versions $x(t+1), x(-t)$ and $x(-t+1)$.

The signal $x(-t)$ is the reversal of $x(t)$ and $x(-t+1)$ would be $x(-t)$ advanced to the right by 1 . Indeed,

$$
\begin{array}{rl}
t & x(-t+1) \\
1 & x(0) \\
0 & x(1) \\
-1 & x(2)
\end{array}
$$

The $\operatorname{sum} y(t)=x(t+1)+x(-t+1)$ is such that at $t=0$ it is $y(0)=2 ; y(t)=x(t+1)$ for $t<0$; and $y(t)=x(-t+1)$ for $t>0$. Thus,

$$
\begin{aligned}
& y(t)=x(t+1)=t+1 \quad 0 \leq t+1<1 \quad \text { or }-1 \leq t<0 \\
& y(0)=2 \\
& y(t)=x(-t+1)=-t+1 \quad 0 \leq-t+1<1 \quad \text { or } \quad 0<t \leq 1
\end{aligned}
$$

or

$$
y(t)=\left\{\begin{array}{lc}
t+1 & -1 \leq t<0 \\
2 & t=0 \\
-t+1 & 0<t \leq 1
\end{array}\right.
$$

(b) Except for the discontinuity at $t=0, y(t)$ looks like the even triangle signal $\Lambda(t)$, their integrals are

Copyright 2014, Elsevier, Inc. All rights reserved.

Figure 1.3: Problem 2: Triangular signal $y(t)$ with discontinuity at the origin.
identical as the discontinuity of $y(t)$ does not add any area.
1.3 (a) We have that
i. $x(t)$ is causal because it is zero for $t<0$. It is neither even nor odd.
ii. Yes, the even component of $x(t)$ is

$$
\begin{aligned}
x_{e}(t) & =0.5[x(-t)+x(t)] \\
& =0.5\left[e^{t} u(-t)+e^{-t} u(t)\right]=0.5 e^{-|t|}
\end{aligned}
$$

(b) $x(t)=\cos (t)+j \sin (t)$ is a complex signal, $x_{e}(t)=0.5\left[e^{j t}+e^{-j t}\right]=\cos (t)$ so $x_{o}(t)=j \sin (t)$.
(c) The product of the even signal $x(t)$ with the sine, which is odd, gives an odd signal and because of this symmetry the integral is zero.
(d) Yes, because $x(t)+x(-t)=2 x_{e}(t)$, i.e., twice the even component of $x(t)$, and multiplied by the sine it is an odd function.
1.4 The signal $x(t)=t[u(t)-u(t-1)]$ so that its reflection is

$$
v(t)=x(-t)=-t[u(-t)-u(-t-1)]
$$

and delaying $v(t)$ by 2 is

$$
\begin{aligned}
y(t) & =v(t-2)=-(t-2)[u(-(t-2))-u(-(t-2)-1)] \\
& =(-t+2)[u(-t+2)-u(-t+1)]=(2-t)[u(t-1)-u(t-2)]
\end{aligned}
$$

On the other hand, the delaying of $x(t)$ by 2 gives

$$
w(t)=x(t-2)=(t-2)[u(t-2)-u(t-3)]
$$

which when reflected gives

$$
z(t)=w(-t)=(-t-2)[u(-t-2)-u(-t-3)]
$$

Comparing $y(t)$ and $z(t)$ we can see that these operations do not commute, that the order in which these operations are done cannot be changed, so that $y(t) \neq z(t)$ as shown in Fig. 1.4.

Figure 1.4: Problem 4: Reflection and delaying do not commute, $y(t) \neq z(t)$.
1.6 (a) Using $\Omega_{0}=2 \pi f_{0}=2 \pi / T_{0}$ for
i. $\cos (2 \pi t): \Omega_{0}=2 \pi \mathrm{rad} / \mathrm{sec}, f_{0}=1 \mathrm{~Hz}$ and $T_{0}=1 \mathrm{sec}$.
ii. $\sin (t-\pi / 4): \Omega_{0}=1 \mathrm{rad} / \mathrm{sec}, f_{0}=1 /(2 \pi) \mathrm{Hz}$ and $T_{0}=2 \pi \mathrm{sec}$.
iii. $\tan (\pi t)=\sin (\pi t) / \cos (\pi t): \Omega_{0}=\pi \mathrm{rad} / \mathrm{sec}, f_{0}=1 / 2 \mathrm{~Hz}$ and $T_{0}=2 \mathrm{sec}$.
(b) The fundamental period of $\sin (t)$ is $T_{0}=2 \pi$, and $T_{1}=2 \pi / 3$ is the fundamental period of $\sin (3 t)$, $T_{1} / T_{0}=1 / 3$ so $3 T_{1}=T_{0}=2 \pi$ is the fundamental period of $z(t)$.
(c) i. $y(t)$ is periodic of fundamental period $T_{0}=1$.
ii. $w(t)=x(2 t)$ is $x(t)$ compressed by a factor of 2 so its fundamental period is $T_{0} / 2=1 / 2$, the fundamental period of $z(t)$.
iii. $v(t)$ has same fundamental period as $x(t), T_{0}=1$, indeed $v\left(t+k T_{0}\right)=1 / x\left(t+k T_{0}\right)=$ $1 / x(t)$.
(d) i. $x(t)=2 \cos (t), \Omega_{0}=2 \pi f_{0}=1$ so $f_{0}=1 /(2 \pi)$
ii. $y(t)=3 \cos (2 \pi t+\pi / 4), \Omega_{0}=2 \pi f_{0}=2 \pi$ so $f_{0}=1$
iii. $c(t)=1 / \cos (t)$, of fundamental period $T_{0}=2 \pi$, so $f_{0}=1 /(2 \pi)$.
(e) $z_{e}(t)$ is periodic of fundamental period T_{0}, indeed

$$
\begin{aligned}
z_{e}\left(t+T_{0}\right) & \left.=0.5\left[z\left(t+T_{0}\right)+z\left(-t-T_{0}\right)\right)\right] \\
& =0.5[z(t)+z(-t)]
\end{aligned}
$$

Same for $z_{o}(t)$ since $z_{o}(t)=z(t)-z_{e}(t)$.
1.8 (a) $x(t)$ is a causal decaying exponential with energy

$$
E_{x}=\int_{0}^{\infty} e^{-2 t} d t=\frac{1}{2}
$$

and zero power as

$$
P_{x}=\lim _{T \rightarrow \infty} \frac{E_{x}}{2 T}=0
$$

(b)

$$
E_{z}=\int_{-\infty}^{\infty} e^{-2|t|} d t=2 \underbrace{\int_{0}^{\infty} e^{-2 t} d t}_{E_{z_{1}}}
$$

(c) i. If $y(t)=\operatorname{sign}\left[x_{1}(t)\right]$, it has the same fundamental period as $x_{1}(t)$, i.e., $T_{0}=1$ and $y(t)$ is a train of pulses so its energy is infinite, while

$$
P_{y}=\int_{0}^{1} 1 d t=1
$$

ii. Since $x_{2}(t)=\cos (2 \pi t-\pi / 2)=\cos (2 \pi(t-1 / 4))=x_{1}(t-1 / 4)$, the energy and power of $x_{2}(t)$ coincide with those of $x_{1}(t)$.
(d) $v(t)=x_{1}(t)+x_{2}(t)$ is periodic of fundamental period $T_{0}=2 \pi$, and its power is

$$
P_{v}=\frac{1}{2 \pi} \int_{0}^{2 \pi}(\cos (t)+\cos (2 t))^{2} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\cos ^{2}(t)+\cos ^{2}(2 t)+2 \cos (t) \cos (2 t)\right) d t
$$

Using

$$
\begin{aligned}
& \cos ^{2}(\theta)=\frac{1}{2}+\frac{1}{2} \cos (2 \theta) \\
& \cos (\theta) \cos (\phi)=\frac{1}{2}(\cos (\theta+\phi)+\cos (\theta-\phi))
\end{aligned}
$$

we have

$$
\begin{aligned}
P_{v} & =\underbrace{\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2}(t) d t}_{P_{x_{1}}}+\underbrace{\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2}(2 t) d t}_{P_{x_{2}}}+\underbrace{\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} 2 \cos (t) \cos (2 t)\right) d t}_{0} \\
& =\frac{1}{2}+\frac{1}{2}+0=1
\end{aligned}
$$

(e) Power of $x(t)$

$$
\begin{aligned}
P_{x} & =\frac{1}{T_{0}} \int_{0}^{T_{0}} x^{2}(t) d t \\
& =\int_{0}^{1} \cos ^{2}(2 \pi t) d t \\
& =\int_{0}^{1}\left(1 / 2+\cos ^{2}(4 \pi t) d t=0.5+0=0.5\right.
\end{aligned}
$$

Power of $f(t)$

$$
\begin{aligned}
P_{f} & =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} y^{2}(t) d t \\
& =\lim _{N \rightarrow \infty} \frac{1}{2\left(N T_{0}\right)} \int_{0}^{N T_{0}} y^{2}(t) d t \\
& =\frac{1}{2 T_{0}} \int_{0}^{T_{0}} y^{2}(t) d t=0.5 P_{s}
\end{aligned}
$$

1.11 (a) Yes, expressing $e^{j 2 \pi t}=\cos (2 \pi t)+j \sin (2 \pi t)$, periodic of fundamental period $T_{0}=1$, then the integral is the area under the cosine and sine in one or more periods (which is zero) when $k \neq 0$ and integer. If $k=0$, the integral is also zero.
(b) Yes, whether $t_{0}=0$ (first equation) or a value different from zero, the two integrals are equal as the area under a period is the same. In the case $x(t)=\cos (2 \pi t)$, both integrals are zero.
(c) It is not true, $\cos (2 \pi t) \delta(t-1)=\cos (2 \pi) \delta(t-1)=\delta(t-1)$.
(d) It is true, considering $x(t)$ the product of $\cos (t)$ and $u(t)$ its derivative is

$$
\begin{aligned}
\frac{d x(t)}{d t} & =\frac{d \cos (t)}{d t} u(t)+\cos (t) \frac{d u(t)}{d t} \\
& =-\sin (t) u(t)+\cos (0) \delta(t)
\end{aligned}
$$

(e) Yes,

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left[e^{-t} u(t)\right] \delta(t-2) d \tau & =\int_{0}^{\infty}\left[e^{-2}\right] \delta(t-2) d \tau \\
& =e^{-2}
\end{aligned}
$$

(f) Yes,

$$
\begin{aligned}
\frac{d x(t)}{d t} & =0.5\left[e^{t} u(t)+e^{t} \delta(t)\right]+0.5\left[-e^{-t} u(t)+e^{-t} \delta(t)\right] \\
& =0.5\left[e^{t}-e^{-t}\right] u(t)+\delta(t)=\sinh (t) u(t)+\delta(t)
\end{aligned}
$$

(g) The even component $x_{e}(t)$ is a periodic full-wave rectified signal of amplitude $1 / 2$ and fundamental period $T_{1}=\pi$.
Power of $x(t)$

$$
P_{x}=0.5\left[\frac{1}{\pi} \int_{0}^{\pi} x^{2}(t) d t\right]
$$

Power of $x_{e}(t)$

$$
P_{x_{e}}=\frac{1}{\pi} \int_{0}^{\pi}(0.5 x(t))^{2} d t=0.5 P_{x}
$$

1.12 (a) See Fig. 12a
$x(t)=|t| \underbrace{[u(t+2)-u(t-2)]}_{p(t)}$ Derivative

Figure 1.7: Problem 12

$$
y(t)=\frac{d x(t)}{d t}=2 \delta(t+2)-u(t+2)+2 u(t)-u(t-2)-2 \delta(t-2)
$$

(b) Integral

$$
\int_{-\infty}^{t} y\left(t^{\prime}\right) d t^{\prime}=\left\{\begin{array}{rl}
0 & t<-2 \\
-t & -2 \leq t<0 \\
t & 0 \leq t<2 \\
0 & t \geq 2
\end{array}\right.
$$

which equals $x(t)$.
(c) Yes, because $x(t)$ is an even function of t.
1.13 (a) The signal $x(t)$ is

$$
x(t)= \begin{cases}0 & t<-1 \\ t+1 & -1 \leq t \leq 0 \\ -1 & 0<t \leq 1 \\ 0 & t>1\end{cases}
$$

there are discontinuities at $t=0$ and at $t=1$. The derivative

$$
\begin{aligned}
y(t) & =\frac{d x(t)}{d t} \\
& =u(t+1)-u(t)-2 \delta(t)+\delta(t-1)
\end{aligned}
$$

indicating the discontinuities at $t=0$, a decrease from 1 to -1 , and at $t=1$ an increase from -1 to 0 .
(b) The integral

$$
\begin{aligned}
\int_{-\infty}^{t} y(\tau) d \tau= & \int_{-\infty}^{t}[u(\tau+1)-u(\tau) \\
& -2 \delta(\tau)+\delta(\tau-1)] d \tau=x(t)
\end{aligned}
$$

Figure 1.8: Problem 13
1.16 (a) Because of the discontinuity of $x(t)$ at $t=0$ the even component of $x(t)$ is a triangle with $x_{e}(0)=1$, i.e.,

$$
x_{e}(t)= \begin{cases}0.5(1-t) & 0<t \leq 1 \\ 0.5(1+t) & -1 \leq t<0 \\ 1 & t=0\end{cases}
$$

while the odd component is

$$
x_{o}(t)= \begin{cases}0.5(1-t) & 0<t \leq 1 \\ -0.5(1+t) & -1 \leq t<0 \\ 0 & t=0\end{cases}
$$

Figure 1.10: Problem 16: Even and odd decomposition of $x(t)$.
(b) The energy of $x(t)$ is

$$
\begin{aligned}
\int_{-\infty}^{\infty} x^{2}(t) d t & =\int_{-\infty}^{\infty}\left[x_{e}(t)+x_{o}(t)\right]^{2} d t \\
& =\int_{-\infty}^{\infty} x_{e}^{2}(t) d t+\int_{-\infty}^{\infty} x_{o}^{2}(t) d t+2 \int_{-\infty}^{\infty} x_{e}(t) x_{o}(t) d t
\end{aligned}
$$

where the last equation on the right is zero, given that the integrand is odd.
(c) The energy of $x(t)=1-t, 0 \leq t \leq 1$ and zero otherwise, is given by

$$
\int_{-\infty}^{\infty} x^{2}(t) d t=\int_{0}^{1}(1-t)^{2} d t=t-t^{2}+\left.\frac{t^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}
$$

The energy of the even component is

$$
\int_{-\infty}^{\infty} x_{e}^{2}(t) d t=0.25 \int_{-1}^{0}(1+t)^{2} d t+0.25 \int_{0}^{1}(1-t)^{2} d t=0.5 \int_{0}^{1}(1-t)^{2} d t
$$

where the discontinuity at $t=0$ does not change the above result. The energy of the odd component is

$$
\int_{-\infty}^{\infty} x_{o}^{2}(t) d t=0.25 \int_{-1}^{0}(1+t)^{2} d t+0.25 \int_{0}^{1}(1-t)^{2} d t=0.5 \int_{0}^{1}(1-t)^{2} d t
$$

so that

$$
E_{x}=E_{x_{e}}+E_{x_{o}}
$$

