
Signals and Systems

Fourier Series Part 2
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Fourier series

Book: Chapter 4

Sections/subsections: 4.3.4, 4.3.6, 4.5

Exercises: 4.2, 4.3, 4.4, 4.5, 4.7, 4.11 (3rd Ed.)

Exercises: 4.2, 4.4, 4.6, 4.7, 4.10, 4.18 (2nd Ed.)
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Reflection and even and odd periodic signals

Reflection:

Let x(t) be a periodic signal with a fundamental period T0
and a Fourier expansion

x(t) =
∞∑

k=−∞
XkejkΩ0t

What is the Fourier expansion of x(−t)?

x(−t) =
∞∑

k=−∞
Xke−jkΩ0t =

∞∑
k=−∞

X−kejkΩ0t

Conclusion: if the Fourier coefficients of x(t) are given by
Xk then the Fourier coefficients of x(−t) are given by X−k
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Reflection and even and odd periodic signals

Even periodic signals:

An even signal x(t) is characterized by

x(−t) = x(t) for all t ∈ R

Using the result of the previous slide we find that for an
even signal

X−k = Xk (even signal)

For the expansion coeffcients of the trigonometric Fourier
series we have

ck =
Xk + X−k

2
= Xk and dk = j

Xk − X−k
2

= 0

The trigonometric Fourier series of an even signal has
cosine expansion functions (even functions) only
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Reflection and even and odd periodic signals

Odd periodic signals:

An odd signal x(t) is characterized by

x(−t) = −x(t) for all t ∈ R

For an odd signal we have

X−k = −Xk (odd signal)

The expansion coeffcients of the trigonometric Fourier
series are

ck =
Xk + X−k

2
= 0 and dk = j

Xk − X−k
2

= jXk

The trigonometric Fourier series of an odd signal has sine
expansion functions (odd functions) only
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Real-valued periodic signals

Let x(t) be a periodic signal with a fundamental period T0
and a Fourier expansion

x(t) =
∞∑

k=−∞
XkejkΩ0t

Taking the complex conjugate, we find

x∗(t) =
∞∑

k=−∞
X∗ke

−jkΩ0t =
∞∑

k=−∞
X∗−ke

jkΩ0t

Conclusion: if the Fourier coefficients of x(t) are given by
Xk then the Fourier coefficients of x∗(t) are given by X∗−k
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Real-valued periodic signals

If the signal x(t) is real-valued then x∗(t) = x(t).
Consequently, for a real-valued signal we have

X∗−k = Xk or X−k = X∗k (real-valued signal)

If the signal x(t) is even and real-valued, we have

Xk = X−k = X∗k

showing that the Fourier coefficients Xk are real. Note that
the coefficients ck are real as well.
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Real-valued periodic signals

If the signal x(t) is odd and real-valued, we have

Xk = −X−k = −X∗k

showing that the Fourier coefficients Xk are imaginary.
Note that the coefficients dk are real in this case.
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Time and frequency shifting

Let x(t) be a periodic signal with a fundamental period T0
and a Fourier expansion

x(t) =
∞∑

k=−∞
XkejkΩ0t

What are the Fourier coefficients of x(t − τ), where τ ∈ R
is a time shift?
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Time and frequency shifting

From the Fourier expansion

x(t − τ) =
∞∑

k=−∞
XkejkΩ0(t−τ) =

∞∑
k=−∞

Xke−jkΩ0τejkΩ0t

Conclusion: if the Fourier coefficients of x(t) are given by
Xk then the Fourier coefficients of x(t − τ) are given by
Xke−jkΩ0τ .
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Time and frequency shifting

We are given a periodic signal x(t) with fundamental period
T0. We consider the modulated signal

y(t) = x(t)ejΩ1t

The frequency Ω1 is called the modulation frequency

For this frequency we take: Ω1 = MΩ0, with M an integer,
M� 1

The signal y(t) is periodic with a fundamental period T0
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Time and frequency shifting

For the signals x(t) and y(t) we have the Fourier
expansions

x(t) =
∞∑

k=−∞
XkejkΩ0t and y(t) =

∞∑
k=−∞

YkejkΩ0t

How are the Fourier coefficients of y(t) related to the
Fourier coeffcients of x(t)?

y(t) = x(t)ejΩ1t =
∞∑

k=−∞
Xkej(kΩ0+Ω1)t

=
∞∑

k=−∞
Xkej(k+M)Ω0t =

∞∑
k=−∞

Xk−MejkΩ0t
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Time and frequency shifting

Conclusion: if the Fourier coefficients of x(t) are given by
Xk then the Fourier coefficients of x(t)ejMΩ0t are given by
Xk−M.

The spectrum of x(t) is shifted in frequency by
Ω1 = MΩ0 rad/s
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Sum and multiplication of periodic signals

Let x(t) be a periodic signal with fundamental period T1. Its
fundamental frequency is

Ω1 =
2π
T1

Let y(t) be a periodic signal with fundamental period T2. Its
fundamental frequency is

Ω2 =
2π
T2

Consider the signal z(t), which is a linear combination of
x(t) and y(t):

z(t) = αx(t) + βy(t)

α and β are constants.
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Sum and multiplication of periodic signals

As we have seen, if
T2
T1

=
N
M

with N and M integers ≥ 1 with no common factor then

z(t) is periodic with fundamental period and frequency

T0 = MT2 = NT1, and Ω0 =
2π
T0

respectively

Note that

Ω1 =
2π
T1

= NΩ0 and Ω2 =
2π
T2

= MΩ0
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Sum and multiplication of periodic signals

Remark: when N and M have no common factor, then N
and M are said to be relatively prime or coprime

Example: N = 4 and M = 6 are not relatively prime.
Common factor is 2.

4
6

=
2 · 2
2 · 3

=
2
3

Example: N = 2 and N = 3 are relatively prime. These
numbers do not have a common factor.
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Sum and multiplication of periodic signals

Since x(t) is periodic with fundamental frequency
Ω1 = NΩ0 it has a Fourier expansion of the form

x(t) =
∞∑

k=−∞
XkejkΩ1t =

∞∑
k=−∞

XkejkNΩ0t

Since y(t) is periodic with fundamental frequency
Ω2 = MΩ0 it has a Fourier expansion of the form

y(t) =
∞∑

k=−∞
YkejkΩ2t =

∞∑
k=−∞

YkejkMΩ0t
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Sum and multiplication of periodic signals

Since z(t) is periodic with fundamental frequency Ω0 it has
a Fourier expansion of the form

z(t) =
∞∑

k=−∞
ZkejkΩ0t

How are the coeffcients Zk related to the coeffcients Xk

and Yk?
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Sum and multiplication of periodic signals

Using the Fourier expansions of x(t) and y(t), we find

z(t) = αx(t) + βy(t)

=
∞∑

k=−∞
αXkejkNΩ0t +

∞∑
k=−∞

βYkejkMΩ0t

=
∞∑

k=−∞
ZkejkΩ0t

The integers: Z
Given an integer N ≥ 1

We say that an integer k ∈ Z is an integer multiple of N if
there exists an integer p ∈ Z such that k = pN
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Sum and multiplication of periodic signals

Example: N = 3
k = 0 is an integer multiple of N, since for p = 0 ∈ Z, we
have k = 0 · N = 0.
k = 0 is an integer multiple of any N

k = 1 is not an integer multiple of 3
k = −1 is not an integer multiple of 3

k = 3 is an integer multiple of N = 3 (p = 1)
k = −3 is an integer multiple of N = 3 (p = −1)

21



Sum and multiplication of periodic signals

If k is an integer multiple of N and k is an integer multiple
of M:

Zk = αXk/N + βYk/M

If k is not an integer multiple of N and k is not an integer
multiple of M:

Zk = 0

If k is an integer multiple of N and k is not an integer
multiple of M:

Zk = αXk/N

If k is not an integer multiple of N and k is an integer
multiple of M:

Zk = βYk/M
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Sum and multiplication of periodic signals

Example: N = 2 and M = 3, α = β = 1

Z0 = X0 + Y0

Z1 = 0

Z2 = X1

Z3 = Y1

Z4 = X2

Z5 = 0

Z6 = X3 + Y2

· · ·
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Sum and multiplication of periodic signals

Book:

z(t) =
∞∑

k=−∞
(αXk/N + βYk/M)ejkΩ0t

with k/N and k/M integers
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Sum and multiplication of periodic signals

Let x(t) and y(t) be periodic signals with fundamental
period T0
Fourier expansions of these signals

x(t) =
∞∑

k=−∞
XkejkΩ0t and y(t) =

∞∑
m=−∞

YmejmΩ0t

We multiply the signals x(t) and y(t) to obtain

z(t) = x(t)y(t)

The signal z(t) is also periodic with fundamental period T0
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Sum and multiplication of periodic signals

Fourier expansion of z(t):

z(t) =
∞∑

n=−∞
ZnejnΩ0t

How are the Fourier coefficients of x(t) and y(t) related to
the Fourier coefficients of z(t)?
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Sum and multiplication of periodic signals

We compute

z(t) = x(t)y(t)

=
∞∑

k=−∞
XkejkΩ0t

∞∑
m=−∞

YmejmΩ0t

=
∞∑

k=−∞

∞∑
m=−∞

XkYmej(k+m)Ω0t

n=k+m
=

∞∑
k=−∞

∞∑
n=−∞

XkYn−kejnΩ0t

=
∞∑

n=−∞

∞∑
k=−∞

XkYn−kejnΩ0t =
∞∑

n=−∞
ZnejnΩ0t

27



Sum and multiplication of periodic signals

We conclude that the Fourier coefficients of z(t) are given
by

Zn =
∞∑

k=−∞
XkYn−k

Zn is equal to the convolution of the discrete sequences Xk

and Yk

Compare with

z(t) =

∫ ∞
τ=−∞

x(τ)y(t − τ) dτ

Discrete convolutions will be discussed extensively further
on in the course
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Derivatives and integrals of periodic signals

Periodic signal x(t) with a Fourier expansion

x(t) =
∞∑

k=−∞
XkejkΩ0t

Let y(t) be the derivative of this signal. We have

y(t) =
dx
dt

=
∞∑

k=−∞
Xk · jkΩ0 · ejkΩ0t =

∞∑
k=−∞

YkejkΩ0t

We conclude
Yk = Xk · jkΩ0
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Derivatives and integrals of periodic signals

Periodic signal y(t) with a Fourier expansion

y(t) =
∞∑

k=−∞
YkejkΩ0t

Signal has no dc component: Y0 = 0

y(t) =
∞∑

k=−∞
k 6=0

YkejkΩ0t
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Derivatives and integrals of periodic signals

Integral of y(t):

z(t) =

∫ t

τ=−∞
y(τ) dτ

With MT0 ≤ t and M an integer, we have

z(t) =

∫ t

τ=−∞
y(τ) dτ

=

∫ MT0

τ=−∞
y(τ) dτ︸ ︷︷ ︸

=0

+

∫ t

τ=MT0
y(τ) dτ

=

∫ t

τ=MT0
y(τ) dτ
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Derivatives and integrals of periodic signals

Substitute the Fourier series of y(t) to obtain

z(t) =

∫ t

τ=MT0

∞∑
k=−∞

k6=0

YkejkΩ0τ dτ

=
∞∑

k=−∞
k 6=0

Yk

∫ t

τ=MT0
ejkΩ0τ dτ

= −
∞∑

k=−∞
k 6=0

Yk
1

jkΩ0
+

∞∑
k=−∞

k6=0

Yk
1

jkΩ0
ejkΩ0t

= Z0 +
∞∑

k=−∞
k6=0

ZkejkΩ0t
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Derivatives and integrals of periodic signals

with

Z0 = −
∞∑

k=−∞
k 6=0

Yk
1

jkΩ0

and

Zk = Yk
1

jkΩ0
k 6= 0
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Amplitude and time scaling of periodic signals

Periodic signal x(t) with a Fourier expansion

x(t) =
∞∑

k=−∞
XkejkΩ0t

What is the Fourier transform of y(t) = Ax(αt), α > 0?

From the Fourier expansion of x(t):

y(t) = Ax(αt) =
∞∑

k=−∞
AXkejkαΩ0t

We observe:
y(t) is a periodic signal with fundamental frequency αΩ0

and Fourier coefficients Yk = AXk

Note that time scaling with an α > 0 does not affect the
Fourier coeffcients
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