Chapter 4 — Frequency Analysis:
The Fourier Series

Richard Heusdens
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Fourier series

Jean Baptiste Joseph Fourier (1768-1830)

Fourier's idea:
any periodic function can be writ-

ten as a weighted sum of sines and
cosines of different frequencies.

(not exactly true)
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Fourier series

2T

z(t) = co + 2 Z (cx cos(kQpt) + di sin(kQot)), Qo = T

k=1 _—

period

When Fourier submitted his paper in 1807, the committee (which in-

cluded Lagrange, Laplace, Malus and Legendre, among others) con-
cluded:

. the manner in which the author arrives at these equations is not
exempt of difficulties and [...] his analysis to integrate them still

leaves something to be desired on the score of generality and even
rigour.
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Fourier series

Fourier's paper never got published, until

some 15 years later, when Fourier wrote P THEORIEA‘
his own book, The Analytical Theory of | assriaoe
Heat (Fourier 1822). | DELACHALEUR,

Piar M. FOURIER.'

In that book, Fourier extended his finding
to non-periodic signals, stating that such
a signal can be represented by a weighted
integral of a series of sine and cosine func-
tions. Such an integral is termed the
Fourier transform.
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What in this chapter?

e Eigenfunctions and LTI systems

e Complex and trigonometric Fourier series
e Spectrum of periodic signals

e Fourier series and Laplace transform

e Properties of Fourier series

e Convergence of Fourier series
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Eigenfunctions revisited

Consider a LTI system with input signal z(¢) = e%°,t € R:

C oo transfer function

= esot/ h(T)e *°Tdr = %' H (sg)

\ . J/

~"

H(so)
assuming H(sq) exists (sg € ROC)

t

o ¢°°" is called an eigenfunction of the LTI system

Cosewr e
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Eigenfunctions revisited

Special case:

t

o ¢50t — eJf0t: harmonic signal = y(t) = H(jQO)ejQOt

The function H(jQ2) is called the frequency response of the LTI sys-

tem:
y(t) = H(jgo)ejﬁot _ |H(jQO)|€j(Qot+4H(jQO))

o magnitude response |H(j§2)| modifies the magnitude of e7*0?

o phase response /H (j€)) modifies the phase of e/f%’
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Fourier series and transform

Express x as a linear combination of harmonics e/t

p(t)= > Xped™' = )= > H(jQ)Xpe!

k=—00 k=—o0

Fourier series
or

Fourier transform

(t) = /_ T X(@Qed0 = y(t) = /_ T HGQX(Q)e 0
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Why study this special case?

e Fourier transform is probably the most widely applied signal
processing tool in science and engineering

e Ties together two of the most used phenomenas known to en-
gineers: those of time and frequency

e Time and frequency are dual domains

e Many signal manipulations are done in the frequency domain
including filtering, sampling, modulation, etc.

e Harmonic signals appear naturally in many applications

e Steady-state analysis
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Fourier series

Can we represent /approximate any signal by sinusoids?

Approximation using 9 sinusoids Error using 9 sinusoids
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Fourier series

Key questions:
e Does any signal has such a representation?

e How should we choose the frequencies of the constituent sinu-
soids?

e How do we find the weights?
e How many do we need, finite or infinite many?

e How does the sequence converge (in norm, pointwise, uni-
formly)?

B S T
2
TUDelft



Orthonormal system

Pythagoras’ theorem

2
Jz)1? =) |z, ex)?
k=1
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Orthonormal system

e The functions {Yx(t),t € |a,b]} are called orthonormal (or-
thogonal and normalized) if

0 k#m
1 k=m

b
(Wrs m) Z/ %(t)%’%(t)dt—{

e To ensure the existence of the norm and the inner product,
we assume the functions have finite energy. That is, ¥ €

L?([a, b]) where

I*(E) = {f /E ()2t < o0)
C sewerwr s
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Orthonormal system

Theorem: Let {1 }72; denote a complete orthonormal system in
L*(E) and let x € L*(FE). Then

o

k=1

Moreover, we have (Parseval's identity)

Jz)* =) (2, )
k=1
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Complex Fourier series

The Fourier series representation of a periodic signal z(t) of period
Ty is given by

x(t) = Z Xpel®0t Qg = T:

k=—o0

with Fourier coefficients X,

1 to+To .
X = —/ x(t)e IRolgt ke Z
TO tO

oo
Moreover, we have (Parseval’s identity): ||z||* = Ty Z 1 X |?

k=—oc0

L meews s
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Complex Fourier series

e Fourier series determine the frequency components of periodic
signals and how the power is distributed over the frequency
components, called the spectrum

e The spectrum of periodic signals is discrete (line spectrum)

e For real signals, the spectrum is conjugate symmetric:
1 to+70o

= — r(t)el Mot = X
TO tO

X_

e As a consequence, | X_j| =|Xg| and LX_ = -2 X}
even symmetric odd symmetric
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Complex Fourier series

Example (periodic pulse train):

>t

e DC (average) value of 1
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Complex Fourier series

e Complex Fourier series

Xi = —/ x(t)e IR olgr = = e IR0t gy
—To/2 1o J-1,/4

, k#0
—Ty /4

1, k=0

= sin(kn/2), k#£0

1, k=0
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Complex Fourier series

Fourier series is given by

.T(t) —1 T zejﬁot T 2 —7Q0t 2 1300t L 2 —73Q0t L

—€ — —€ —€
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Period of train of rectangular pulses and its magnitude and phase line spectra.
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Complex Fourier series

Note that ‘Xk| = ‘X_k;’ and that £ X, = —ZX_,.

Hence, we can rewrite the Fourier series as

x(t) — 1 + gejQOt + ge_jQOt _ 36]3901*, L ie_j?’QOt o
T T 37 37

4 4
=1+ - cos(Qpt) — o cos(3Qpt) + - - -
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Trigonometric Fourier series

The Fourier series representation of a periodic signal z(t) of period
Ty i1s given by
2w

x(t) = co + 2 Z (cr cos(kt) + di sin(kQot)), Qo = T

k=0

with Fourier coefficients ¢, and dj

1 to+710o

C = — x(t) cos(kQot)dt, k=0,1,2,---
To J4,
1 to+710o

dy, x(t) sin(kQot)dt, k=1,2,---

TO tO
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Trigonometric Fourier series

Observe that
1

® C — §(Xk; —|—X_k), dk = %(Xk — X_k)

o Xy =cp—jdi, X_p=cp+ jdi

d
o | Xi| =1/ +d2, /X =—tan" (C—k>
k

e if x even symmetric (z(t) = x(—t)), all dis are zero

e if x odd symmetric (x(t) = —x(—t)), all cxs are zero
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Trigonometric Fourier series

Example (periodic pulse train):

>t

e DC (average) value of 1

e 1(t) is even symmetric (dgs are zero)
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Trigonometric Fourier series

e Trigonometric Fourier series

1 To/2 4 [To/4
Ck = — x(t) cos(kQpt)dt = — cos(kQpt)dt
To J-1,/2 1o Jo
(2
iy Esin(lmﬂ), k#0
L1, k=0

Hence, the Fourier series is given by

r(t) =1+ %COS(QQt) — :;iﬂ cos(3pt) + - - -
etz e
]
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Fourier series

Some observations:
e Notice that

lim X = lim ¢ =0
k— o0 k— o0

Riemann-Lebesgue lemma: If z € L?(FE), then

lim z(t)e M otgr = 0

lim [ x(t)cos(kQot)dt = lim [ x(t)sin(kQpt)dt =0
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Fourier series

Some observations:

e Notice that

lim X, = lim ¢ =0
k— o0 k— o0

and that the decay is of order (’)(k_l)

o 1(1y/4) = 2 but the Fourier series yields 1 at t = T, /4 777

e The Fourier series seems to have convergence problems around
discontinuities (Gibb’s phenomena)
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Gibb’s Phenomena

4 4
r(t) =14 — cos(Qot) — 3 cos(3Qpt) + - - -

EE2S11
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Approximation using 100 sinusoids
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Convergence of Fourier series

Some (important) remarks:

oo
o Let y(t) = Z X,e/™t denotes the Fourier series represen-

k=—o00

tation of z(¢). Then ||x — y|| = 0. That is

/ 2(t) — ()| 2dt = 0

e \We have convergence in norm, which does not imply that it
converges pointwise to x(t)
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Relation Laplace transform

Let x1(t) be defined as

\

x(t), t € [to,to+ T
x1(t) =
one fundamental period

0, otherwise

Then
to+To ,
X, (s) = / 21 (H)e—"dt.
to ~—
The Fourier coefficients X, are given by X = Tin(s)
0 S:ijQQ
1 to+70o _
Xg = _/ 1 (t)e It qy /
TO tO
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Properties of Fourier Series

e Time-shifting: y(t) = x(t + 7) < Y =BT X,

Direct approach:

1 [T . 1 [t .
Y, = T/ r(t 4 1) IF ot g = - x(s)e IF=T) g
0Jo 0J0
eijoT TO ) .
= —7 / r(s)e M 0s gy = P 0T X
0o Jo

Using Laplace (see Table 3.1):

1
- (eSTXl (s))
TO SIijO

%
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Properties of Fourier Series

e Frequency-shifting:  y(t) = x(t)e ™ 0! A Xktm

Direct approach:

L[ imQot_—jkQot Lo (kt-m)Qot
Y = — —Jjmaiolt ,—7 0 — —7 m)$lo — X -
c=T x(t)e e dt T /. x(t)e dt kot
Using Laplace (see Table 3.1):
1 1 .
Y, = TYl(s) — TXl(S + jm$) = Xkam
0 s=7kQp 0 s=jkQ
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Properties of Fourier Series

dx(t
e Differentiation:  y(t) = xdi ) PN Y. = 7kQo X
Direct approach:
1 [T 1 [T
Y= — ! (t)e IRt gy = — e IRt (2 (t))
TO 0 TO 0
1 _ To  jkQy [1° . .
= — g(t)eIFh! / t)e IFtaL = jEQ0X
T x(t)e . + 7 /. x(t)e 7kQo X}
Using Laplace (see Table 3.1):
1 1 .
Yi = TYl(S) = — (le(s) = 7kQo Xy,
0 S:ijo 0 S:ijQ
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Convergence of the Fourier Series

e Fourier series can be defined for functions z € L'(E) D L*(FE)

e The pointwise convergence of a Fourier series is a rather com-

plicated problem (Dirichlet conditions)

— Dirichlet (1829) showed that if x € L!(E) and has a finite
number of discontinuities and extrema, then the Fourier
series converges everywhere to the local average

— Kolmogorov (1926) has given an example of a function in
LY(E) in which the Fourier series diverges everywhere!

— Carleson (1966) proved that if + € L?(FE), then the
Fourier series converges for almost all ¢ to x(t)
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Convergence of the Fourier Series

Dirichlet’s theorem: if z € L'([0,Tp]), then

1 o
Sn(t) = —/ r(u)Dy(u —t)du
TO 0
where o ”
in((N + 5)Qot) “F
Dy (t) = SR+ )00

Sin(%ﬂot) il

Is called Dirichlet’s kernel

10 +

0

-10 1 1 I
-10 -5 0 5 10
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Convergence of the Fourier Series

Conclusion:

e Convergence of Fourier series depends on local behaviour

e For large IV, the Dirichlet kernel becomes a d-function:

(z(ty ) +x(tg))

DO | —

lim SN(to) —

N — o0

If x is continuous at t = tg, then lim Sy (tg) = z(to)
N —00

In conclusion, the Fourier series converges in norm (we have equality
in L?([0,Ty])), but we only have pointwise convergence at points
where x is continuous!
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Convergence of the Fourier Series

Qo =1
Example: x(t) =t,t € [—m, ]. Since x is odd, ¢x = 0 for all k and

1 T

di, = — tsin(kt)dt
2w ) _ .
-1, (kt) ' + L [" (kt)dt 1( 1)F+1
= ——tcos — COS = —(—
2Tk . 2tk J_; k
0
Hence, the Fourier series becomes
2 2 2 2
T sin(t) — 5 sin(2t) + 3 sin(3t) — 1 sin(4t) + - - -
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Convergence of the Fourier Series

e Notice that lim di = 0 and that the decay is C’)(k_l)

k— 00

e z(m) = m but substituting ¢ = 7 in the Fourier series yields 0

2e r
dkT

r r r r r r r r r r r r r
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e
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Convergence of the Fourier Series

approximation using 1 sinusoid approximation using 2 sinusoids
4 4
2 2
0 0
-2 -2
_—n —7/2 0 /2 T __J'E /2 0 /2 T
approximation using 3 sinusoids approximation using 10 sinusoids
4
5 pad 5 M
0 0
N 2l
- —4
-7 —-1t/2 0 /2 T -7 —7t/2 0 /2 T
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Convergence of the Fourier Series

Example: x(t) = |t|,t € [—m,w|. Since x is even, dx = 0 for all k

1 T
Cl = —/ t cos(kt)dt
0

T
1 T 1 7 0, k=2,4,...
LGy -2 / sin(Jt)dt =
K o kT o =2k odd
~0
and

1 [" 7
= — tdt = —
0 7T/O 2
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Convergence of the Fourier Series

The Fourier series becomes

g 4 (cos(t) N cos(3t)  cos(5t) L )

12 32 i 52

T

Notice that lim ¢, = 0 and that the decay is of order O(k™2)

k— 00

_2 r r r r r r r r r r r r r r
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 k-
—_—
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Convergence of the Fourier Series

approximation using 1 sinusoid approximation using 2 sinusoids

4 4

3 3

2 2

1 1

0 0

- -2 0 /2 T - /2 0 /2 T
approximation using 3 sinusoids approximation using 10 sinusoids

i N/

T 2 |

0 0
- -1t/2 0 /2 T - -1t/2 0 /2 T
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Convergence of the Fourier Series

e If z is p times differentiable and all derivatives are in L!(E),

then

x D) L (k)P X

e Applying the Riemann-Lebesgue lemma on z(P), we conclude

that
lim (k)P X =0

k—+o00

so that regularity of x translates to rapid decay of X

This explains the faster decay of the Fourier coefficients of the func-
tion x(t) = |t| as compared to those of z(t) = ¢.
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Convergence of the Fourier Series

dy(t)
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What have we accomplished?

e Response of LTI systems to periodic signals (eigenfunction prop-
erty)

e Harmonic (sinusoidal) representation of periodic/finite-length
signals

e Spectrum of periodic/finite-length signals
e Connection between Fourier and Laplace

e Convergence properties of Fourier series
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Where do we go?

e Extension of Fourier representation for aperiodic/infinite-length
signals

e Unification of spectral theory for periodic and aperiodic signals
e Connection between Fourier and Laplace transforms

e Duality relation time and frequency domain

e Convolution and filtering

e Relation between pole/zero locations and frequency response
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