Chapter 4 - Frequency Analysis: The Fourier Series

Richard Heusdens

Fourier series

Jean Baptiste Joseph Fourier (1768-1830)

Fourier's idea:
any periodic function can be written as a weighted sum of sines and cosines of different frequencies.
(not exactly true)

Fourier series

$$
x(t)=c_{0}+2 \sum_{k=1}^{\infty}\left(c_{k} \cos \left(k \Omega_{0} t\right)+d_{k} \sin \left(k \Omega_{0} t\right)\right), \quad \Omega_{0}=\frac{2 \pi}{T_{0}}
$$

When Fourier submitted his paper in 1807, the committee (which included Lagrange, Laplace, Malus and Legendre, among others) concluded:
... the manner in which the author arrives at these equations is not exempt of difficulties and [...] his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.

Fourier series

Fourier's paper never got published, until some 15 years later, when Fourier wrote his own book, The Analytical Theory of Heat (Fourier 1822).

In that book, Fourier extended his finding to non-periodic signals, stating that such a signal can be represented by a weighted integral of a series of sine and cosine functions. Such an integral is termed the Fourier transform.

What in this chapter?

- Eigenfunctions and LTI systems
- Complex and trigonometric Fourier series
- Spectrum of periodic signals
- Fourier series and Laplace transform
- Properties of Fourier series
- Convergence of Fourier series

Eigenfunctions revisited

Consider a LTI system with input signal $x(t)=e^{s_{0} t}, t \in \mathbb{R}$:

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} h(\tau) e^{s_{0}(t-\tau)} d \tau \\
& =e^{s_{0} t} \underbrace{\int_{-\infty}^{\infty} h(\tau) e^{-s_{0} \tau} d \tau}_{H\left(s_{0}\right)}=e^{s_{0} t} H\left(s_{0}\right)
\end{aligned}
$$

assuming $H\left(s_{0}\right)$ exists ($\left.s_{0} \in \mathrm{ROC}\right)$

- $e^{s_{0} t}$ is called an eigenfunction of the LTI system

Eigenfunctions revisited

Special case:

- $e^{s_{0} t}=e^{j \Omega_{0} t}$: harmonic signal $\Rightarrow y(t)=H\left(j \Omega_{0}\right) e^{j \Omega_{0} t}$

The function $H(j \Omega)$ is called the frequency response of the LTI system:

$$
y(t)=H\left(j \Omega_{0}\right) e^{j \Omega_{0} t}=\left|H\left(j \Omega_{0}\right)\right| e^{j\left(\Omega_{0} t+\angle H\left(j \Omega_{0}\right)\right)}
$$

- magnitude response $\left|H\left(j \Omega_{0}\right)\right|$ modifies the magnitude of $e^{j \Omega_{0} t}$
- phase response $\angle H\left(j \Omega_{0}\right)$ modifies the phase of $e^{j \Omega_{0} t}$

Fourier series and transform

Express x as a linear combination of harmonics $e^{j \Omega_{k} t}$:

$$
\left.x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j \Omega_{k} t} \quad \Rightarrow \quad t\right)=\sum_{k=-\infty}^{\infty} H\left(j \Omega_{k}\right) X_{k} e^{j \Omega_{k} t}
$$

Fourier series
or
Fourier transform

$$
x(t)=\int_{-\infty}^{\infty} X(\Omega) e^{j \Omega t} d \Omega \Rightarrow y(t)=\int_{-\infty}^{\infty} H(j \Omega) X(\Omega) e^{j \Omega t} d \Omega
$$

Why study this special case?

- Fourier transform is probably the most widely applied signal processing tool in science and engineering
- Ties together two of the most used phenomenas known to engineers: those of time and frequency
- Time and frequency are dual domains
- Many signal manipulations are done in the frequency domain including filtering, sampling, modulation, etc.
- Harmonic signals appear naturally in many applications
- Steady-state analysis

Fourier series

Can we represent/approximate any signal by sinusoids?

Fourier series

Key questions:

- Does any signal has such a representation?
- How should we choose the frequencies of the constituent sinusoids?
- How do we find the weights?
- How many do we need, finite or infinite many?
- How does the sequence converge (in norm, pointwise, uniformly)?

Orthonormal system

$$
x=\sum_{k=1}^{2}\left(x, e_{k}\right) e_{k}, \quad\|x\|^{2}=\sum_{k=1}^{2}\left|\left(x, e_{k}\right)\right|^{2}
$$

Orthonormal system

- The functions $\left\{\psi_{k}(t), t \in[a, b]\right\}$ are called orthonormal (orthogonal and normalized) if

$$
\left(\psi_{k}, \psi_{m}\right)=\int_{a}^{b} \psi_{k}(t) \psi_{m}^{*}(t) d t=\left\{\begin{array}{cc}
0 & k \neq m \\
1 & k=m
\end{array}\right.
$$

- To ensure the existence of the norm and the inner product, we assume the functions have finite energy. That is, $\psi_{k} \in$ $L^{2}([a, b])$ where

$$
L^{2}(E)=\left\{f: \int_{E}|f(t)|^{2} d t<\infty\right\}
$$

Orthonormal system

Theorem: Let $\left\{\psi_{k}\right\}_{k=1}^{\infty}$ denote a complete orthonormal system in $L^{2}(E)$ and let $x \in L^{2}(E)$. Then

$$
x=\sum_{k=1}^{\infty}\left(x, \psi_{k}\right) \psi_{k}
$$

Moreover, we have (Parseval's identity)

$$
\|x\|^{2}=\sum_{k=1}^{\infty}\left|\left(x, \psi_{k}\right)\right|^{2}
$$

Complex Fourier series

The Fourier series representation of a periodic signal $x(t)$ of period T_{0} is given by

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \Omega_{0} t}, \quad \Omega_{0}=\frac{2 \pi}{T_{0}}
$$

with Fourier coefficients X_{k}

$$
X_{k}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) e^{-j k \Omega_{0} t} d t, \quad k \in \mathbb{Z}
$$

Moreover, we have (Parseval's identity): $\quad\|x\|^{2}=T_{0} \sum_{k=-\infty}^{\infty}\left|X_{k}\right|^{2}$

Complex Fourier series

- Fourier series determine the frequency components of periodic signals and how the power is distributed over the frequency components, called the spectrum
- The spectrum of periodic signals is discrete (line spectrum)
- For real signals, the spectrum is conjugate symmetric:

$$
X_{-k}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) e^{j k \Omega_{0} t} d t=X_{k}^{*}
$$

- As a consequence, $\underbrace{\left|X_{-k}\right|=\left|X_{k}\right|}$ and $\underbrace{\angle X_{-k}=-\angle X_{k}}$

Complex Fourier series

Example (periodic pulse train):

- DC (average) value of 1

Complex Fourier series

- Complex Fourier series

$$
\begin{aligned}
X_{k} & =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) e^{-j k \Omega_{0} t} d t=\frac{2}{T_{0}} \int_{-T_{0} / 4}^{T_{0} / 4} e^{-j k \Omega_{0} t} d t \\
& =\left\{\begin{array}{ll}
\left.\frac{-1}{j k \pi} e^{-j k \Omega_{0} t}\right|_{-T_{0} / 4} ^{T_{0} / 4}, & k \neq 0 \\
1, & k=0 \\
& = \begin{cases}\frac{2}{k \pi} \sin (k \pi / 2), & k \neq 0 \\
1, & k=0\end{cases}
\end{array} . \begin{array}{l}
\end{array}\right.
\end{aligned}
$$

Complex Fourier series

Fourier series is given by

$$
x(t)=1+\frac{2}{\pi} e^{j \Omega_{0} t}+\frac{2}{\pi} e^{-j \Omega_{0} t}-\frac{2}{3 \pi} e^{j 3 \Omega_{0} t}-\frac{2}{3 \pi} e^{-j 3 \Omega_{0} t} \ldots
$$

Period of train of rectangular pulses and its magnitude and phase line spectra.

Complex Fourier series

Note that $\left|X_{k}\right|=\left|X_{-k}\right|$ and that $\angle X_{k}=-\angle X_{-k}$.

Hence, we can rewrite the Fourier series as

$$
\begin{aligned}
x(t) & =1+\frac{2}{\pi} e^{j \Omega_{0} t}+\frac{2}{\pi} e^{-j \Omega_{0} t}-\frac{2}{3 \pi} e^{j 3 \Omega_{0} t}-\frac{2}{3 \pi} e^{-j 3 \Omega_{0} t} \ldots \\
& =1+\frac{4}{\pi} \cos \left(\Omega_{0} t\right)-\frac{4}{3 \pi} \cos \left(3 \Omega_{0} t\right)+\cdots
\end{aligned}
$$

Trigonometric Fourier series

The Fourier series representation of a periodic signal $x(t)$ of period T_{0} is given by

$$
x(t)=c_{0}+2 \sum_{k=0}^{\infty}\left(c_{k} \cos \left(k \Omega_{0} t\right)+d_{k} \sin \left(k \Omega_{0} t\right)\right), \quad \Omega_{0}=\frac{2 \pi}{T_{0}}
$$

with Fourier coefficients c_{k} and d_{k}

$$
\begin{aligned}
& c_{k}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) \cos \left(k \Omega_{0} t\right) d t, \quad k=0,1,2, \cdots \\
& d_{k}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) \sin \left(k \Omega_{0} t\right) d t, \quad k=1,2, \cdots
\end{aligned}
$$

Trigonometric Fourier series

Observe that

- $c_{k}=\frac{1}{2}\left(X_{k}+X_{-k}\right), d_{k}=\frac{j}{2}\left(X_{k}-X_{-k}\right)$
- $X_{k}=c_{k}-j d_{k}, X_{-k}=c_{k}+j d_{k}$
- $\left|X_{k}\right|=\sqrt{c_{k}^{2}+d_{k}^{2}}, \angle X_{k}=-\tan ^{-1}\left(\frac{d_{k}}{c_{k}}\right)$
- if x even symmetric $(x(t)=x(-t))$, all $d_{k} \mathrm{~s}$ are zero
- if x odd symmetric $(x(t)=-x(-t))$, all c_{k} s are zero

Trigonometric Fourier series

Example (periodic pulse train):

- DC (average) value of 1
- $x(t)$ is even symmetric ($d_{k} \mathrm{~s}$ are zero)

Trigonometric Fourier series

- Trigonometric Fourier series

$$
\begin{aligned}
c_{k} & =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) \cos \left(k \Omega_{0} t\right) d t=\frac{4}{T_{0}} \int_{0}^{T_{0} / 4} \cos \left(k \Omega_{0} t\right) d t \\
& = \begin{cases}\frac{2}{k \pi} \sin (k \pi / 2), & k \neq 0 \\
1, & k=0\end{cases}
\end{aligned}
$$

Hence, the Fourier series is given by

$$
x(t)=1+\frac{4}{\pi} \cos \left(\Omega_{0} t\right)-\frac{4}{3 \pi} \cos \left(3 \Omega_{0} t\right)+\cdots
$$

Fourier series

Some observations:

- Notice that

$$
\lim _{k \rightarrow \infty} X_{k}=\lim _{k \rightarrow \infty} c_{k}=0
$$

Riemann-Lebesgue lemma: If $x \in L^{2}(E)$, then

$$
\begin{gathered}
\lim _{k \rightarrow \pm \infty} \int_{E} x(t) e^{-j k \Omega_{0} t} d t=0 \\
\lim _{k \rightarrow \infty} \int_{E} x(t) \cos \left(k \Omega_{0} t\right) d t=\lim _{k \rightarrow \infty} \int_{E} x(t) \sin \left(k \Omega_{0} t\right) d t=0
\end{gathered}
$$

Fourier series

Some observations:

- Notice that

$$
\lim _{k \rightarrow \infty} X_{k}=\lim _{k \rightarrow \infty} c_{k}=0
$$

and that the decay is of order $\mathcal{O}\left(k^{-1}\right)$

- $x\left(T_{0} / 4\right)=2$ but the Fourier series yields 1 at $t=T_{0} / 4$???
- The Fourier series seems to have convergence problems around discontinuities (Gibb's phenomena)

Gibb's Phenomena

$$
x(t)=1+\frac{4}{\pi} \cos \left(\Omega_{0} t\right)-\frac{4}{3 \pi} \cos \left(3 \Omega_{0} t\right)+\cdots
$$

Convergence of Fourier series

Some (important) remarks:

- Let $y(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \Omega_{0} t}$ denotes the Fourier series representation of $x(t)$. Then $\|x-y\|=0$. That is

$$
\int_{E}|x(t)-y(t)|^{2} d t=0
$$

- We have convergence in norm, which does not imply that it converges pointwise to $x(t)$

Relation Laplace transform

Let $x_{1}(t)$ be defined as

$$
x_{1}(t)= \begin{cases}x(t), & t \in\left[t_{0}, t_{0}+T_{0}\right] \\ 0, & \text { otherwise } \\ \text { one fundamental period }\end{cases}
$$

Then

$$
X_{1}(s)=\int_{t_{0}}^{t_{0}+T_{0}} x_{1}(t) e^{-s t} d t
$$

The Fourier coefficients X_{k} are given by

$$
X_{k}=\left.\frac{1}{T_{0}} X_{1}(s)\right|_{s=j k \Omega_{0}}
$$

$$
X_{k}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x_{1}(t) e^{-j k \Omega_{0} t} d t
$$

Properties of Fourier Series

- Time-shifting: $y(t)=x(t+\tau) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad Y_{k}=e^{j k \Omega_{0} \tau} X_{k}$

Direct approach:

$$
\begin{aligned}
Y_{k} & =\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t+\tau) e^{-j k \Omega_{0} t} d t=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(s) e^{-j k \Omega_{0}(s-\tau)} d s \\
& =\frac{e^{j k \Omega_{0} \tau}}{T_{0}} \int_{0}^{T_{0}} x(s) e^{-j k \Omega_{0} s} d s=e^{j k \Omega_{0} \tau} X_{k}
\end{aligned}
$$

Using Laplace (see Table 3.1):

$$
Y_{k}=\left.\frac{1}{T_{0}} Y_{1}(s)\right|_{s=j k \Omega_{0}}=\left.\frac{1}{T_{0}}\left(e^{s \tau} X_{1}(s)\right)\right|_{s=j k \Omega_{0}}=e^{j k \Omega_{0} \tau} X_{k}
$$

Properties of Fourier Series

- Frequency-shifting: $y(t)=x(t) e^{-j m \Omega_{0} t} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad Y_{k}=X_{k+m}$

Direct approach:
$Y_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j m \Omega_{0} t} e^{-j k \Omega_{0} t} d t=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j(k+m) \Omega_{0} t} d t=X_{k+m}$

Using Laplace (see Table 3.1):
$Y_{k}=\left.\frac{1}{T_{0}} Y_{1}(s)\right|_{s=j k \Omega_{0}}=\left.\frac{1}{T_{0}} X_{1}\left(s+j m \Omega_{0}\right)\right|_{s=j k \Omega_{0}}=X_{k+m}$

Properties of Fourier Series

- Differentiation: $y(t)=\frac{d x(t)}{d t} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad Y_{k}=j k \Omega_{0} X_{k}$

Direct approach:

$$
\begin{aligned}
Y_{k} & =\frac{1}{T_{0}} \int_{0}^{T_{0}} x^{\prime}(t) e^{-j k \Omega_{0} t} d t=\frac{1}{T_{0}} \int_{0}^{T_{0}} e^{-j k \Omega_{0} t} d(x(t)) \\
& =\left.\frac{1}{T_{0}} x(t) e^{-j k \Omega_{0} t}\right|_{0} ^{T_{0}}+\frac{j k \Omega_{0}}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j k \Omega_{0} t} d t=j k \Omega_{0} X_{k}
\end{aligned}
$$

Using Laplace (see Table 3.1):

$$
Y_{k}=\left.\frac{1}{T_{0}} Y_{1}(s)\right|_{s=j k \Omega_{0}}=\left.\frac{1}{T_{0}}\left(s X_{1}(s)\right)\right|_{s=j k \Omega_{0}}=j k \Omega_{0} X_{k}
$$

Convergence of the Fourier Series

- Fourier series can be defined for functions $x \in L^{1}(E) \supset L^{2}(E)$
- The pointwise convergence of a Fourier series is a rather complicated problem
(Dirichlet conditions)
- Dirichlet (1829) showed that if $x \in L^{1}(E)$ and has a finite number of discontinuities and extrema, then the Fourier series converges everywhere to the local average
- Kolmogorov (1926) has given an example of a function in $L^{1}(E)$ in which the Fourier series diverges everywhere!
- Carleson (1966) proved that if $x \in L^{2}(E)$, then the Fourier series converges for almost all t to $x(t)$

Convergence of the Fourier Series

Dirichlet's theorem: if $x \in L^{1}\left(\left[0, T_{0}\right]\right)$, then

$$
S_{N}(t)=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(u) D_{N}(u-t) d u
$$

where

$$
D_{N}(t)=\frac{\sin \left(\left(N+\frac{1}{2}\right) \Omega_{0} t\right)}{\sin \left(\frac{1}{2} \Omega_{0} t\right)}
$$

Convergence of the Fourier Series

Conclusion:

- Convergence of Fourier series depends on local behaviour
- For large N, the Dirichlet kernel becomes a δ-function:

$$
\lim _{N \rightarrow \infty} S_{N}\left(t_{0}\right)=\frac{1}{2}\left(x\left(t_{0}^{-}\right)+x\left(t_{0}^{+}\right)\right)
$$

If x is continuous at $t=t_{0}$, then $\lim _{N \rightarrow \infty} S_{N}\left(t_{0}\right)=x\left(t_{0}\right)$
In conclusion, the Fourier series converges in norm (we have equality in $\left.L^{2}\left(\left[0, T_{0}\right]\right)\right)$, but we only have pointwise convergence at points where x is continuous!

Convergence of the Fourier Series

Example: $x(t)=t, t \in[-\overparen{\pi, \pi}]$. Since x is odd, $c_{k}=0$ for all k and

$$
\begin{aligned}
d_{k} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} t \sin (k t) d t \\
& =\left.\frac{-1}{2 \pi k} t \cos (k t)\right|_{-\pi} ^{\pi}+\frac{1}{2 \pi k} \underbrace{\int_{-\pi}^{\pi} \cos (k t) d t}_{=0}=\frac{1}{k}(-1)^{k+1}
\end{aligned}
$$

Hence, the Fourier series becomes

$$
\frac{2}{1} \sin (t)-\frac{2}{2} \sin (2 t)+\frac{2}{3} \sin (3 t)-\frac{2}{4} \sin (4 t)+\cdots
$$

Convergence of the Fourier Series

- Notice that $\lim _{k \rightarrow \infty} d_{k}=0$ and that the decay is $\mathcal{O}\left(k^{-1}\right)$
- $x(\pi)=\pi$ but substituting $t=\pi$ in the Fourier series yields 0

Convergence of the Fourier Series

Convergence of the Fourier Series

Example: $x(t)=|t|, t \in[-\pi, \pi]$. Since x is even, $d_{k}=0$ for all k

$$
\begin{aligned}
& c_{k}=\frac{1}{\pi} \int_{0}^{\pi} t \cos (k t) d t \\
& \stackrel{(k \neq 0)}{=} \underbrace{\left.\frac{1}{k \pi} t \sin (k t)\right|_{0} ^{\pi}}_{=0}-\frac{1}{k \pi} \int_{0}^{\pi} \sin (k t) d t= \begin{cases}0, & k=2,4, \ldots \\
\frac{-2}{\pi k^{2}}, & k \text { odd }\end{cases}
\end{aligned}
$$

and

$$
c_{0}=\frac{1}{\pi} \int_{0}^{\pi} t d t=\frac{\pi}{2}
$$

Convergence of the Fourier Series

The Fourier series becomes

$$
\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos (t)}{1^{2}}+\frac{\cos (3 t)}{3^{2}}+\frac{\cos (5 t)}{5^{2}}+\cdots\right)
$$

Notice that $\lim _{k \rightarrow \infty} c_{k}=0$ and that the decay is of order $\mathcal{O}\left(k^{-2}\right)$

Convergence of the Fourier Series

Convergence of the Fourier Series

- If x is p times differentiable and all derivatives are in $L^{1}(E)$, then

$$
x^{(p)}(t) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad\left(j k \Omega_{0}\right)^{p} X_{k}
$$

- Applying the Riemann-Lebesgue lemma on $x^{(p)}$, we conclude that

$$
\lim _{k \rightarrow \pm \infty}\left(k \Omega_{0}\right)^{p} X_{k}=0
$$

so that regularity of x translates to rapid decay of X_{k}
This explains the faster decay of the Fourier coefficients of the function $x(t)=|t|$ as compared to those of $x(t)=t$.

Convergence of the Fourier Series

What have we accomplished?

- Response of LTI systems to periodic signals (eigenfunction property)
- Harmonic (sinusoidal) representation of periodic/finite-length signals
- Spectrum of periodic/finite-length signals
- Connection between Fourier and Laplace
- Convergence properties of Fourier series

Where do we go?

- Extension of Fourier representation for aperiodic/infinite-length signals
- Unification of spectral theory for periodic and aperiodic signals
- Connection between Fourier and Laplace transforms
- Duality relation time and frequency domain
- Convolution and filtering
- Relation between pole/zero locations and frequency response

