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Chapter 4 – Frequency Analysis: 
The Fourier Series

Richard Heusdens
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Fourier series
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Fourier series 

Jean Baptiste Joseph Fourier (1768-1830)

(not exactly true)

Fourier’s idea:

any periodic function can be rewrit-
ten as a weighted sum of sines and
cosines of di↵erent frequencies.
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Fourier series

When Fourier submitted his paper in 1807, the committee (which in-
cluded Lagrange, Laplace, Malus and Legendre, among others) con-
cluded:

... the manner in which the author arrives at these equations is not
exempt of di�culties and [...] his analysis to integrate them still
leaves something to be desired on the score of generality and even
rigour.

x(t) = c0 + 2
1X

k=1

(ck cos(k⌦0t) + dk sin(k⌦0t)) , ⌦0 =
2⇡

T0

period
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Fourier series

Fourier’s paper never got published, until
some 15 years later, when Fourier wrote
his own book, The Analytical Theory of

Heat (Fourier 1822).

In that book, Fourier extended his finding
to non-periodic signals, stating that such
a signal can be represented by a weighted
integral of a series of sine and cosine func-
tions. Such an integral is termed the
Fourier transform.
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What in this chapter?

• Eigenfunctions and LTI systems

• Complex and trigonometric Fourier series

• Spectrum of periodic signals

• Fourier series and Laplace transform

• Properties of Fourier series

• Convergence of Fourier series
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Consider a LTI system with input signal x(t) = e
s0t, t 2 R:

y(t) =

Z 1

�1
h(⌧)es0(t�⌧)

d⌧

= e
s0t

Z 1

�1
h(⌧)e�s0⌧d⌧

| {z }
H(s0)

= e
s0tH(s0)

assuming H(s0) exists (s0 2 ROC)
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Eigenfunctions revisited

• es0t is called an eigenfunction of the LTI system

transfer function
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Eigenfunctions revisited

Special case:

• es0t = ej⌦0t: harmonic signal ) y(t) = H(j⌦0)e
j⌦0t

The function H(j⌦) is called the frequency response of the LTI sys-
tem:

y(t) = H(j⌦0)e
j⌦0t = |H(j⌦0)|ej(⌦0t+\H(j⌦0))

• magnitude response |H(j⌦0)| modifies the magnitude of ej⌦0t

• phase response \H(j⌦0) modifies the phase of ej⌦0t
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Express x as a linear combination of harmonics ej⌦kt:

x(t) =
1X

k=�1
Xke

j⌦kt ) y(t) =
1X

k=�1
H(j⌦k)Xke

j⌦kt

or

x(t) =

Z 1

�1
X(⌦)ej⌦t

d⌦ ) y(t) =

Z 1

�1
H(j⌦)X(⌦)ej⌦t

d⌦
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Fourier series and transform

Fourier series

Fourier transform
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Why study this special case?

• Fourier transform is probably the most widely applied signal

processing tool in science and engineering

• Ties together two of the most used phenomenas known to en-

gineers: those of time and frequency

• Time and frequency are dual domains

• Many signal manipulations are done in the frequency domain

including filtering, sampling, modulation, etc.

• Harmonic signals appear naturally in many applications

• Steady-state analysis
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Fourier series

Can we represent/approximate any signal by sinusoids?
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Fourier series

Key questions:

• Does any signal has such a representation?

• How should we choose the frequencies of the constituent sinu-

soids?

• How do we find the weights?

• How many do we need, finite or infinite many?

• How does the sequence converge (in norm, pointwise, uni-

formly)?
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Orthonormal system

e1

e2

x

R2

(x, e1)

(x, e2)
(ek, em) =

(
1, k = m

0, k 6= m

Pythagoras’ theorem

x =
2X

k=1

(x, ek)ek, kxk2 =
2X

k=1

|(x, ek)|2
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Orthonormal system

• The functions { k(t), t 2 [a, b]} are called orthonormal (or-
thogonal and normalized) if

( k, m) =

Z b

a
 k(t) 

⇤
m(t)dt =

(
0 k 6= m

1 k = m

• To ensure the existence of the norm and the inner product,
we assume the functions have finite energy. That is,  k 2
L2([a, b]) where

L2(E) = {f :

Z

E
|f(t)|2dt < 1}
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Orthonormal system

Theorem: Let { k}1k=1 denote a complete orthonormal system in
L2(E) and let x 2 L2(E). Then

x =
1X

k=1

(x, k) k

Moreover, we have (Parseval’s identity)

kxk2 =
1X

k=1

|(x, k)|2
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Complex Fourier series

The Fourier series representation of a periodic signal x(t) of period
T0 is given by

x(t) =
1X

k=�1
Xke

jk⌦0t, ⌦0 =
2⇡

T0

with Fourier coe�cients Xk

Xk =
1

T0

Z t0+T0

t0

x(t)e�jk⌦0tdt, k 2 Z

Moreover, we have (Parseval’s identity): kxk2 = T0

1X

k=�1
|Xk|2
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Complex Fourier series

• Fourier series determine the frequency components of periodic
signals and how the power is distributed over the frequency
components, called the spectrum

• The spectrum of periodic signals is discrete (line spectrum)

• For real signals, the spectrum is conjugate symmetric:

X�k =
1

T0

Z t0+T0

t0

x(t)ejk⌦0tdt = X⇤
k

• As a consequence, |X�k| = |Xk|| {z }
even symmetric

and \X�k = �\Xk| {z }
odd symmetric
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Complex Fourier series

Example (periodic pulse train):

t

x(t)

0 T0�T0

2

• DC (average) value of 1
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Complex Fourier series

• Complex Fourier series

Xk =
1

T0

Z T0/2

�T0/2
x(t)e�jk⌦0tdt =

2

T0

Z T0/4

�T0/4
e�jk⌦0tdt

=

8
>><

>>:

�1

jk⇡
e�jk⌦0t

����
T0/4

�T0/4

, k 6= 0

1, k = 0

=

8
<

:

2

k⇡
sin(k⇡/2), k 6= 0

1, k = 0
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Complex Fourier series

Fourier series is given by

x(t) = 1 +
2

⇡
ej⌦0t +

2

⇡
e�j⌦0t � 2

3⇡
ej3⌦0t � 2

3⇡
e�j3⌦0t · · ·
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Complex Fourier series

Note that |Xk| = |X�k| and that \Xk = �\X�k.

Hence, we can rewrite the Fourier series as

x(t) = 1 +
2

⇡
ej⌦0t +

2

⇡
e�j⌦0t � 2

3⇡
ej3⌦0t � 2

3⇡
e�j3⌦0t · · ·

= 1 +
4

⇡
cos(⌦0t)�

4

3⇡
cos(3⌦0t) + · · ·
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Trigonometric Fourier series

The Fourier series representation of a periodic signal x(t) of period
T0 is given by

x(t) = c0 + 2
1X

k=0

(ck cos(k⌦0t) + dk sin(k⌦0t)) , ⌦0 =
2⇡

T0

with Fourier coe�cients ck and dk

ck =
1

T0

Z t0+T0

t0

x(t) cos(k⌦0t)dt, k = 0, 1, 2, · · ·

dk =
1

T0

Z t0+T0

t0

x(t) sin(k⌦0t)dt, k = 1, 2, · · ·
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Trigonometric Fourier series

Observe that

• ck =
1

2
(Xk +X�k), dk =

j

2
(Xk �X�k)

• Xk = ck � jdk, X�k = ck + jdk

• |Xk| =
q
c2k + d2k, \Xk = � tan�1

✓
dk
ck

◆

• if x even symmetric (x(t) = x(�t)), all dks are zero

• if x odd symmetric (x(t) = �x(�t)), all cks are zero
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Trigonometric Fourier series

Example (periodic pulse train):

t

x(t)

0 T0�T0

2

• DC (average) value of 1

• x(t) is even symmetric (dks are zero)
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Trigonometric Fourier series

• Trigonometric Fourier series

ck =
1

T0

Z T0/2

�T0/2
x(t) cos(k⌦0t)dt =

4

T0

Z T0/4

0
cos(k⌦0t)dt

=

8
<

:

2

k⇡
sin(k⇡/2), k 6= 0

1, k = 0

Hence, the Fourier series is given by

x(t) = 1 +
4

⇡
cos(⌦0t)�

4

3⇡
cos(3⌦0t) + · · ·



EE2S11

December 1, 2017 25

Fourier series

Some observations:

• Notice that
lim
k!1

Xk = lim
k!1

ck = 0

Riemann-Lebesgue lemma: If x 2 L2(E), then

lim
k!±1

Z

E
x(t)e�jk⌦0tdt = 0

lim
k!1

Z

E
x(t) cos(k⌦0t)dt = lim

k!1

Z

E
x(t) sin(k⌦0t)dt = 0
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Fourier series

Some observations:

• Notice that
lim
k!1

Xk = lim
k!1

ck = 0

and that the decay is of order O(k�1)

• x(T0/4) = 2 but the Fourier series yields 1 at t = T0/4 ???

• The Fourier series seems to have convergence problems around
discontinuities (Gibb’s phenomena)
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Gibb’s Phenomena

x(t) = 1 +
4

⇡
cos(⌦0t)�

4

3⇡
cos(3⌦0t) + · · ·
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Convergence of Fourier series

• We have convergence in norm, which does not imply that it
converges pointwise to x(t)

Some (important) remarks:

• Let y(t) =
1X

k=�1
Xke

jk⌦0t denotes the Fourier series represen-

tation of x(t). Then kx� yk = 0. That is
Z

E
|x(t)� y(t)|2dt = 0
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Let x1(t) be defined as

x1(t) =

(
x(t), t 2 [t0, t0 + T0]

0, otherwise

Then

X1(s) =

Z t0+T0

t0

x1(t)e
�stdt.

The Fourier coe�cients Xk are given by

Xk =
1

T0

Z t0+T0

t0

x1(t)e
�jk⌦0tdt

December 1, 2017 29

Relation Laplace transform

Xk =
1

T0
X1(s)

����
s=jk⌦0

one fundamental period
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Properties of Fourier Series

Direct approach:

• Time-shifting: y(t) = x(t+ ⌧)
F ! Yk = ejk⌦0⌧Xk

Yk =
1

T0

Z T0

0
x(t+ ⌧)e�jk⌦0tdt =

1

T0

Z T0

0
x(s)e�jk⌦0(s�⌧)ds

=
ejk⌦0⌧

T0

Z T0

0
x(s)e�jk⌦0sds = ejk⌦0⌧Xk

Yk =
1

T0
Y1(s)

����
s=jk⌦0

=
1

T0

⇣
es⌧X1(s)

⌘����
s=jk⌦0

= ejk⌦0⌧Xk

Using Laplace (see Table 3.1):
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Properties of Fourier Series

Direct approach:

• Frequency-shifting: y(t) = x(t)e�jm⌦0t F ! Yk = Xk+m

Yk =
1

T0
Y1(s)

����
s=jk⌦0

=
1

T0
X1(s+ jm⌦0)

����
s=jk⌦0

= Xk+m

Yk =
1

T0

Z T0

0
x(t)e�jm⌦0te�jk⌦0tdt =

1

T0

Z T0

0
x(t)e�j(k+m)⌦0tdt = Xk+m

Using Laplace (see Table 3.1):
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Properties of Fourier Series

Direct approach:

• Di↵erentiation: y(t) =
dx(t)

dt
F ! Yk = jk⌦0Xk

Yk =
1

T0
Y1(s)

����
s=jk⌦0

=
1

T0

⇣
sX1(s)

⌘����
s=jk⌦0

= jk⌦0Xk

Using Laplace (see Table 3.1):

Yk =
1

T0

Z T0

0
x0(t)e�jk⌦0tdt =

1

T0

Z T0

0
e�jk⌦0td(x(t))

=
1

T0
x(t)e�jk⌦0t

���
T0

0
+

jk⌦0

T0

Z T0

0
x(t)e�jk⌦0tdt = jk⌦0Xk
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Convergence of the Fourier Series

• Fourier series can be defined for functions x 2 L1(E) � L2(E)

• The pointwise convergence of a Fourier series is a rather com-
plicated problem

– Dirichlet (1829) showed that if x 2 L1(E) and has a finite
number of discontinuities and extrema, then the Fourier
series converges everywhere to the local average

– Kolmogorov (1926) has given an example of a function in
L1(E) in which the Fourier series diverges everywhere!

– Carleson (1966) proved that if x 2 L2(E), then the
Fourier series converges for almost all t to x(t)

(Dirichlet conditions)
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Convergence of the Fourier Series

-10 -5 0 5 10
-10

0
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50

N = 20

Dirichlet’s theorem: if x 2 L1([0, T0]), then

SN (t) =
1

T0

Z T0

0
x(u)DN (u� t)du

where

DN (t) =
sin((N + 1

2 )⌦0t)

sin( 12⌦0t)

is called Dirichlet’s kernel
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Convergence of the Fourier Series

Conclusion:

• Convergence of Fourier series depends on local behaviour

• For large N , the Dirichlet kernel becomes a �-function:

lim
N!1

SN (t0) =
1

2

�
x(t�0 ) + x(t+0 )

�

If x is continuous at t = t0, then lim
N!1

SN (t0) = x(t0)

In conclusion, the Fourier series converges in norm (we have equality
in L2([0, T0])), but we only have pointwise convergence at points
where x is continuous!
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Convergence of the Fourier Series
⌦0 = 1

Example: x(t) = t, t 2 [�⇡,⇡]. Since x is odd, ck = 0 for all k and

dk =
1

2⇡

Z ⇡

�⇡
t sin(kt)dt

=
�1

2⇡k
t cos(kt)

����
⇡

�⇡

+
1

2⇡k

Z ⇡

�⇡
cos(kt)dt

| {z }
=0

=
1

k
(�1)k+1

Hence, the Fourier series becomes

2

1
sin(t)� 2

2
sin(2t) +

2

3
sin(3t)� 2

4
sin(4t) + · · ·
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Convergence of the Fourier Series

• Notice that lim
k!1

dk = 0 and that the decay is O(k�1)

• x(⇡) = ⇡ but substituting t = ⇡ in the Fourier series yields 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-2

-1

0

1

2

dk

k
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Convergence of the Fourier Series

EE2S31 

April 28, 2015 14 

Fourier Series 
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�2 
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�2 
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Convergence of the Fourier Series

Example: x(t) = |t|, t 2 [�⇡,⇡]. Since x is even, dk = 0 for all k

ck =
1

⇡

Z ⇡

0
t cos(kt)dt

=
1

k⇡
t sin(kt)

����
⇡

0| {z }
=0

� 1

k⇡

Z ⇡

0
sin(kt)dt =

(
0, k = 2, 4, . . .

�2
⇡k2 , k odd

and

c0 =
1

⇡

Z ⇡

0
tdt =

⇡

2

(k 6= 0)
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Convergence of the Fourier Series

The Fourier series becomes

⇡

2
�

4

⇡

✓
cos(t)

12
+

cos(3t)

32
+

cos(5t)

52
+ · · ·

◆

Notice that lim
k!1

ck = 0 and that the decay is of order O(k�2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-2

-1

0

1

2ck

k
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Convergence of the Fourier Series

EE2S31 

April 28, 2015 19 
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Convergence of the Fourier Series

This explains the faster decay of the Fourier coe�cients of the func-
tion x(t) = |t| as compared to those of x(t) = t.

• If x is p times di↵erentiable and all derivatives are in L1(E),
then

x(p)(t)
F ! (jk⌦0)

pXk

• Applying the Riemann-Lebesgue lemma on x(p), we conclude
that

lim
k!±1

(k⌦0)
pXk = 0

so that regularity of x translates to rapid decay of Xk
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Convergence of the Fourier Series
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What have we accomplished?

• Response of LTI systems to periodic signals (eigenfunction prop-

erty)

• Harmonic (sinusoidal) representation of periodic/finite-length

signals

• Spectrum of periodic/finite-length signals

• Connection between Fourier and Laplace

• Convergence properties of Fourier series
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Where do we go?

• Extension of Fourier representation for aperiodic/infinite-length
signals

• Unification of spectral theory for periodic and aperiodic signals

• Connection between Fourier and Laplace transforms

• Duality relation time and frequency domain

• Convolution and filtering

• Relation between pole/zero locations and frequency response


