Signals and Systems

Fourier Series Part 1

Introducting Fourier series

- Introduction to Fourier series
- The complex exponential Fourier series
- Convergence of the Fourier series
- Parseval's power relation
- Trigonometric Fourier series
- Fourier series and the Laplace transform
- Response of LTI systems to periodic signals

Introduction to Fourier series

- Book: Chapter 4
- Sections/subsections: 4.1, 4.2, 4.3.1, 4.3.2, 4.3.3, 4.3.5, 4.4
- Exercises: 4.2, 4.3, 4.4, 4.5, 4.7, 4.11 (3rd Ed.)
- Exercises: 4.2, 4.4, 4.6, 4.7, 4.10, 4.18 (2nd Ed.)

Introduction to Fourier series

- We have seen that the exponential signal is an eigensignal of an LTI system
- We now focus on periodic signals and use this exponential signal to describe such functions
- Recall that a signal $x(t)$ is periodic if there exists a $T>0$ such that

$$
x(t+T)=x(t) \quad \text { for all } t \in \mathbb{R}
$$

- T is called a period of the signal
- The smallest period is denoted as T_{0} and is called the fundamental period

Introduction to Fourier series

- We start by constructing periodic signals using exponential signals as building blocks
- Let us start with the signal

$$
x_{1}(t)=X_{1} e^{j \Omega_{0} t}+X_{-1} e^{-j \Omega_{0} t}
$$

- X_{1} and X_{-1} are complex numbers
- $\Omega_{0}[\mathrm{rad} / \mathrm{s}]$ is the fundamental frequency of the signal
- The signal has a fundamental period

$$
T_{0}=\frac{2 \pi}{\Omega_{0}}
$$

Introduction to Fourier series

- We provide the numbers X_{1} and X_{-1} to realize the signal $x_{1}(t)$
- Example: $X_{1}=X_{-1}=1 / 2$:

$$
x_{1}(t)=\cos \left(\Omega_{0} t\right)
$$

- Example: $X_{1}=X_{-1}^{*}=\frac{1}{2 j}$:

$$
x_{1}(t)=\sin \left(\Omega_{0} t\right)
$$

Introduction to Fourier series

- What if we add a constant?

$$
x_{1}(t)=X_{0}+X_{1} e^{j \Omega_{0} t}+X_{-1} e^{-j \Omega_{0} t}
$$

- Signal is still periodic with fundamental period T_{0}
- What if we add additional powers of the exponential signal?

$$
x_{N}(t)=\sum_{k=-N}^{N} x_{k} e^{j k \Omega_{0} t}
$$

- Signal is still periodic with fundamental period T_{0}

Introduction to Fourier series

- Note the procedure up till now: We provide the X_{k} 's to construct $x_{N}(t)$
- Now the other way around
- Suppose
- we know $x_{N}(t)$
- and we know that $x_{N}(t)$ can be written in the form

$$
x_{N}(t)=\sum_{k=-N}^{N} x_{k} e^{j k \Omega_{0} t}
$$

- We do not know the coefficients X_{k}, however

Introduction to Fourier series

- How do we determine these coefficients?
- Step 1: Start with

$$
x_{N}(t)=\sum_{k=-N}^{N} x_{k} e^{j k \Omega_{0} t}
$$

- Step 2: Multiply this equation by $e^{-j m \Omega_{0} t}, m$ an integer, $|m| \leq N$

$$
e^{-\mathrm{j} m \Omega_{0} t} x_{N}(t)=\sum_{k=-N}^{N} x_{k} e^{j(k-m) \Omega_{0} t}
$$

Introduction to Fourier series

- Integrate over a single period:

$$
\begin{aligned}
\int_{t=t_{0}}^{t_{0}+T_{0}} e^{-j m \Omega_{0} t_{2}} x_{N}(t) d t & =\int_{t=t_{0}}^{t_{0}+T_{0}} \sum_{k=-N}^{N} x_{k} e^{j(k-m) \Omega_{0} t} d t \\
& =\sum_{k=-N}^{N} x_{k} \int_{t=t_{0}}^{t_{0}+T_{0}} e^{j(k-m) \Omega_{0} t} d t
\end{aligned}
$$

- Since

$$
\int_{t=t_{0}}^{t_{0}+T_{0}} e^{j(k-m) \Omega_{0} t} \mathrm{~d} t= \begin{cases}T_{0} & m=k \\ 0 & m \neq k\end{cases}
$$

Introduction to Fourier series

- We are left

$$
\int_{t=t_{0}}^{t_{0}+T_{0}} e^{-\mathrm{j} m \Omega_{0} t} x_{N}(t) \mathrm{d} t=T_{0} X_{m}
$$

- and find

$$
x_{m}=\frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}} x_{N}(t) e^{-j m \Omega_{0} t} \mathrm{~d} t, \quad m=0, \pm 1, \pm 2, \ldots, \pm N
$$

Introduction to Fourier series

- Conclusion:
- A periodic signal $x_{N}(t)$ is given and it is known that it can be written in the form

$$
\begin{equation*}
x_{N}(t)=\sum_{k=-N}^{N} x_{k} e^{j k \Omega_{0} t} \tag{*}
\end{equation*}
$$

- The coefficients can be determined as

$$
x_{k}=\frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}} x_{N}(t) e^{-j k \Omega_{0} t} \mathrm{~d} t, \quad k=0, \pm 1, \pm 2, \ldots, \pm N
$$

- The signal of Eq. (*) is known as a finite Fourier series

Introduction to Fourier series

- Note that $x_{N}(t)$ is a very smooth function of time
- It can be differentiated arbitrarily often and the resulting signal is continuous again
- Now what if we have a periodic signal with a discontinuity?
- Or what if we have a periodic signal with a derivative that has a discontinuity?
- Or what if we have a periodic signal for which its nth derivative ($n \geq 1$) has a discontinuity?
- To make a chance of representing such signals by exponential signals, we take an infinite number of exponential expansion signals
- We write

$$
x(t)=\sum_{k=-\infty}^{\infty} x_{k} e^{j k \Omega_{0} t}
$$

with

$$
x_{k}=\frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}} x_{N}(t) e^{-j k \Omega_{0} t} \mathrm{~d} t, \quad k=0, \pm 1, \pm 2, \ldots
$$

- This is the complex exponential Fourier series of the periodic signal $x(t)$

Convergence of the Fourier series

- Some remarks about convergence
- When discussing convergence of the Fourier series, the basic question to answer is:
- What happens to the partial sums

$$
x_{N}(t)=\sum_{k=-N}^{N} x_{k} e^{\mathrm{j} k \Omega_{0} t} \quad \text { as } N \rightarrow \infty ?
$$

Convergence of the Fourier series

- Pointwise convergence: Let $x(\dagger)$ be a periodic signal with fundamental period T_{0}. The signal is piecewise continuous with a piecewise continuous derivative.
- If $x(t)$ is continuous a $t=t_{0}$, then

$$
x\left(t_{0}\right)=\lim _{N \rightarrow \infty} x_{N}\left(t_{0}\right)=\sum_{k=-\infty}^{\infty} x_{k} e^{j k \Omega_{0} t_{0}}
$$

- If $x(t)$ has a jump discontinuity at $t=t_{0}$ with left limit $x\left(t_{0}^{-}\right)$and right limit $x\left(t_{0}^{+}\right)$, then

$$
\frac{x\left(t_{0}^{-}\right)+x\left(t_{0}^{+}\right)}{2}=\lim _{N \rightarrow \infty} x_{N}\left(t_{0}\right)=\sum_{k=-\infty}^{\infty} x_{k} e^{j k \Omega_{0} t_{0}}
$$

Convergence of the Fourier series

- Other convergence definitions
- Uniform convergence:

$$
\max _{t_{0} \leq t \leq t_{0}+T_{0}}\left|x(t)-x_{N}(t)\right| \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

Loosely speaking, when the signal $x_{N}(t)$ converges uniformly to $x(t)$, then the graph of $x_{N}(t)$ "stays close" to the graph of $x(t)$ on the complete interval $t_{0} \leq t \leq t_{0}+T_{0}$

Convergence of the Fourier series

- Convergence in the sense that the average quadratic error tends to zero as $N \rightarrow \infty$:

$$
\lim _{N \rightarrow \infty} \frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}}\left|x(t)-x_{N}(t)\right|^{2} \mathrm{~d} t=0
$$

- Type of convergence depends on the signal
- Uniform convergence is the strongest type of convergence. It implies pointwise and averaged squared error convergence

Convergence of the Fourier series

- Gibb's phenomenon

$$
x(t)= \begin{cases}1 & 0<t<1 / 2 \\ -1 & 1 / 2<t<1\end{cases}
$$

- Recall that the power of a periodic signal $x(t)$ is given by

$$
P_{x}=\frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}}|x(t)|^{2} \mathrm{~d} t
$$

- If $x(t)$ is square integrable then $P_{x}<\infty$
- For $x(t)$ we have the Fourier series representation

$$
x(t)=\sum_{k=-\infty}^{\infty} x_{k} e^{j k \Omega_{0} t}
$$

- For its complex conjugate, we have

$$
x^{*}(t)=\sum_{m=-\infty}^{\infty} x_{m}^{*} e^{-j m \Omega_{0} t}
$$

- Consequently,

$$
\begin{aligned}
|x(t)|^{2} & =x(t) x^{*}(t) \\
& =\sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x_{k} X_{m}^{*} e^{j(k-m) \Omega_{0} t}
\end{aligned}
$$

- Substitution gives

$$
\begin{aligned}
P_{x} & =\frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}} \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} X_{k} X_{m}^{*} e^{j(k-m) \Omega_{0} t} \mathrm{~d} t \\
& =\frac{1}{T_{0}} \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} X_{k} X_{m}^{*} \int_{t=t_{0}}^{t_{0}+T_{0}} e^{j(k-m) \Omega_{0} t} \mathrm{~d} t
\end{aligned}
$$

- Since

$$
\int_{t=t_{0}}^{t_{0}+T_{0}} e^{\mathrm{j}(k-m) \Omega_{0} t} \mathrm{~d} t= \begin{cases}T_{0} & m=k \\ 0 & m \neq k\end{cases}
$$

- we arrive at

$$
P_{x}=\sum_{k=-\infty}^{\infty}\left|X_{k}\right|^{2}
$$

- This is Parseval's power relation
- Parseval's power relation stated differently
- Write

$$
x(t)=\sum_{k=-\infty}^{\infty} x_{k}(t) \quad \text { with } \quad x_{k}(t)=x_{k} e^{j k \Omega_{0} t}
$$

- We have

$$
P_{X_{k}}=\left|X_{k}\right|^{2}
$$

- In words: the power of the signal $x(t)$ is equal to the sum of powers of its Fourier series components
- Power line spectrum:

$$
\text { Plot }\left|X_{k}\right|^{2} \text { vs. } k \Omega_{0}, \quad k=0, \pm 1, \pm 2, \ldots
$$

- Magnitude line spectrum:

$$
\text { Plot }\left|X_{k}\right| \text { vs. } k \Omega_{0}, \quad k=0, \pm 1, \pm 2, \ldots
$$

- Phase line spectrum:

$$
\text { Plot } \angle X_{k} \text { vs. } k \Omega_{0}, \quad k=0, \pm 1, \pm 2, \ldots
$$

- Consider a signal that is square integrable, that is, it has finite power
- Parseval's power relation

$$
\sum_{k=-\infty}^{\infty}\left|X_{k}\right|^{2}=P_{x}<\infty
$$

- The sum on the left-hand side converges
- Consequently,

$$
\left|X_{k}\right|^{2} \rightarrow 0 \quad \text { as } k \pm \infty
$$

- In words: the Fourier coefficients tend to zero as $k \rightarrow \pm \infty$
- It can be shown that if the signal is absolutely integrable then

$$
\lim _{k \rightarrow \infty} X_{k}=0
$$

as well. This is the famous Riemann-Lebesgue lemma

- Can we say something about how fast the coefficients tend to zero as $k \rightarrow \pm \infty$?
- For simplicity, consider a signal $x(t)$
- having a jump discontinuity at $t=\tilde{f}, t_{0}<\tilde{t}<t_{0}+T_{0}$
- Left limit: $x\left(\tilde{f}^{-}\right)$, right limit: $x\left(\tilde{f}^{+}\right)$
- No jumps at the end points: $x\left(t_{0}\right)=x\left(t_{0}+T_{0}\right)$
- Away from $\tilde{f}, x(t)$ has continuous derivatives up to any desired order
- For the Fourier coeffcients, we have

$$
\begin{aligned}
X_{k} & =\frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}} x(t) e^{-\mathrm{j} k \Omega_{0} t} \mathrm{~d} t \\
& =\frac{1}{T_{0}} \int_{t=t_{0}}^{\tilde{t}} x(t) e^{-\mathrm{j} k \Omega_{0} t} \mathrm{~d} t+\frac{1}{T_{0}} \int_{t=\tilde{t}}^{t_{0}+T_{0}} x(t) e^{-\mathrm{j} k \Omega_{0} t} \mathrm{~d} t
\end{aligned}
$$

- First integral. Integration by parts gives

$$
\begin{aligned}
\frac{1}{T_{0}} \int_{t=t_{0}}^{\tilde{t}} x(t) e^{-j k \Omega_{0} t} \mathrm{~d} t & =\frac{1}{j 2 \pi k} e^{-j k \Omega_{0} t_{0}} x\left(t_{0}\right) \\
& -\frac{1}{j 2 \pi k} e^{-j k \Omega_{0} \tilde{t}^{-}} x\left(\tilde{t}^{-}\right) \\
& +\frac{1}{j 2 \pi k} \int_{t=t_{0}}^{\tau} x^{\prime}(t) e^{-j k \Omega_{0} t} d t
\end{aligned}
$$

- where we have used $T_{0} \Omega_{0}=2 \pi$
- Second integral. Integration by parts gives

$$
\begin{aligned}
\frac{1}{T_{0}} \int_{t=\tilde{t}}^{t_{0}+T_{0}} x(t) e^{-j k \Omega_{0} t} \mathrm{~d} t & =\frac{1}{j 2 \pi k} e^{-\mathrm{j} k \Omega_{0} \tilde{t}^{+}} x\left(\tilde{f}^{+}\right) \\
& -\frac{1}{j 2 \pi k} e^{-j k \Omega_{0} t_{0}} x\left(t_{0}+T_{0}\right) \\
& +\frac{1}{j 2 \pi k} \int_{t=\tilde{t}}^{t_{0}+T_{0}} x^{\prime}(t) e^{-j k \Omega_{0} t} \mathrm{~d} t
\end{aligned}
$$

- where we have used $T_{0} \Omega_{0}=2 \pi$
- Consequently,

$$
x_{k}=\left.\frac{1}{j 2 \pi k} e^{-j k \Omega_{0} t} x(t)\right|_{\tilde{f}-} ^{\tilde{\tau^{+}}}+\frac{1}{j 2 \pi k} \int_{t=t_{0}}^{t_{0}+T_{0}} x^{\prime}(t) e^{-j k \Omega_{0} t} \mathrm{~d} t
$$

- Since $x(t)$ has a jump discontinuity at $t=\tilde{t}$, the first term on the right-hand side does not vanish
- We conclude that the Fourier coeffcient X_{k} must at least have a $1 / k$ term
- Now what if $x(t)$ is continuous at $t=\tilde{t}$, but its derivative has a jump discontinuity at $t=\tilde{t}$?
- Since $x(t)$ is continuous at $t=\tilde{t}$, the first term on the right-hand side now vanishes
- In this case, we have

$$
x_{k}=\frac{1}{j 2 \pi k} \int_{t=t_{0}}^{t_{0}+T_{0}} x^{\prime}(t) e^{-j k \Omega_{0} t} \mathrm{~d} t
$$

- Follow a similar procedure as above (integrate by parts again)
- In this case, we find that the Fourier coeffcient X_{k} must at least have a $1 / k^{2}$ term
- Summary:
- $x(t)$ has a jump discontinuity at $t=\tilde{t}$:

X_{k} should at least have a $1 / k$ term

- $x(t)$ is continuous, but $x^{\prime}(t)$ has a jump discontinuity at $t=\tilde{t}$:
X_{k} should at least have a $1 / k^{2}$ term
- $x(t)$ and $x^{\prime}(t)$ are continuous, but $x^{\prime \prime}(t)$ has a jump discontinuity at $t=\tilde{f}$:
X_{k} should at least have a $1 / k^{3}$ term
- and so on
- We rewrite the complex Fourier series expansion in terms of cos/sin expansion functions
- The analysis is straightforward

$$
\begin{aligned}
x(t) & =\sum_{k=-\infty}^{\infty} x_{k} e^{j k \Omega_{0} t} \\
& =\sum_{k=-\infty}^{-1} x_{k} e^{j k \Omega_{0} t}+x_{0}+\sum_{k=1}^{\infty} x_{k} e^{j k \Omega_{0} t} \\
& =X_{0}+\sum_{k=1}^{\infty} x_{-k} e^{-j k \Omega_{0} t}+\sum_{k=1}^{\infty} x_{k} e^{j k \Omega_{0} t}
\end{aligned}
$$

- We now use Euler's formula to obtain

$$
\begin{aligned}
x(t)=x_{0} & +\sum_{k=1}^{\infty} x_{-k}\left[\cos \left(k \Omega_{0} t\right)-j \sin \left(k \Omega_{0} t\right)\right] \\
& +\sum_{k=1}^{\infty} x_{k}\left[\cos \left(k \Omega_{0} t\right)+j \sin \left(k \Omega_{0} t\right)\right]
\end{aligned}
$$

- Grouping the cos- and sin-terms gives

$$
\begin{aligned}
x(t)=X_{0} & +2 \sum_{k=1}^{\infty} \frac{x_{k}+x_{-k}}{2} \cos \left(k \Omega_{0} t\right) \\
& +2 j \sum_{k=1}^{\infty} \frac{x_{k}-x_{-k}}{2} \sin \left(k \Omega_{0} t\right)
\end{aligned}
$$

- Finally, we compute

$$
\begin{aligned}
\frac{X_{k}+X_{-k}}{2} & =\frac{1}{2 T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}} x(t)\left(e^{-j k \Omega_{0} t}+e^{j k \Omega_{0} t}\right) d t \\
& =\frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}} x(t) \cos \left(k \Omega_{0} t\right) d t=: c_{k} \\
j \frac{X_{k}-X_{-k}}{2} & =\frac{j}{2 T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}} x(t)\left(e^{-j k \Omega_{0} t}-e^{j k \Omega_{0} t}\right) d t \\
& =\frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}} x(t) \sin \left(k \Omega_{0} t\right) d t=: d_{k}
\end{aligned}
$$

- In conclusion

$$
x(t)=c_{0}+2 \sum_{k=1}^{\infty} c_{k} \cos \left(k \Omega_{0} t\right)+d_{k} \sin \left(k \Omega_{0} t\right)
$$

- with

$$
c_{k}=\frac{X_{k}+X_{-k}}{2}, \quad k=0,1,2, \ldots
$$

and

$$
d_{k}=j \frac{X_{k}-X_{-k}}{2}, \quad k=1,2, \ldots
$$

- This is the trigonometric Fourier series
- Let $x(t)$ be a periodic signal with fundamental period T_{0}
- Consider a one-period restriction of this signal

$$
x_{1}(t)=x(t)\left[u\left(t-t_{0}\right)-u\left(t-t_{0}-T_{0}\right)\right]
$$

- Warning: do not confuse this signal with the partial sum $x_{1}(t)$
- The Laplace transform of $x_{1}(t)$ is

$$
x_{1}(s)=\int_{t=-\infty}^{\infty} x_{1}(t) e^{-s t} \mathrm{~d} t=\int_{t=t_{0}}^{t_{0}+T_{0}} x(t) e^{-s t} \mathrm{~d} t
$$

- The Fourier expansion coefficient of $x(t)$ is given by

$$
x_{k}=\frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}} x(t) e^{-\mathrm{j} k \Omega_{0} t} \mathrm{~d} t
$$

- A comparison with the Laplace transform of $x_{1}(t)$ reveals that

$$
X_{k}=\left.\frac{1}{T_{0}} X_{1}(s)\right|_{s=j k \Omega_{0}}, \quad k=0, \pm 1, \pm 2, \ldots
$$

Response of LTI systems to periodic signals

- Consider an LTI system with input signal $x(t)$, impulse response $h(t)$, and output signal $y(t)$
- We have

$$
y(t)=\int_{\tau=-\infty}^{\infty} h(\tau) x(t-\tau) \mathrm{d} \tau
$$

- Finally, let $H(s)$ denote the transfer function of the LTI system
- Input signal $x(t)$: a periodic signal with fundamental period T_{0}
- What is the output?

Response of LTI systems to periodic signals

- Fourier expansion of $x(t): x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \Omega_{0} t}$
- For the output signal we have

$$
\begin{aligned}
y(t) & =\int_{\tau=-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \\
& =\int_{\tau=-\infty}^{\infty} h(\tau) \sum_{k=-\infty}^{\infty} x_{k} e^{j k \Omega_{0}(t-\tau)} \mathrm{d} \tau \\
& =\sum_{k=-\infty}^{\infty} x_{k} e^{j k \Omega_{0} t} \int_{\tau=-\infty}^{\infty} h(\tau) e^{-j k \Omega_{0} \tau} d \tau \\
& =\sum_{k=-\infty}^{\infty} x_{k} e^{j k \Omega_{0} t} H\left(j k \Omega_{0}\right)=\sum_{k=-\infty}^{\infty} y_{k} e^{j k \Omega_{0} t}
\end{aligned}
$$

- with $Y_{k}=X_{k} H\left(j k \Omega_{0}\right)$

Response of LTI systems to periodic signals

- Output signal $y(t)$ is also periodic with fundamental period T_{0} and its Fourier coefficients are given by

$$
y_{k}=X_{k} H\left(j k \Omega_{0}\right), \quad k=0, \pm 1, \pm 2, \ldots
$$

