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Introduction to Fourier series

Book: Chapter 4
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Introduction to Fourier series

We have seen that the exponential signal is an eigensignal
of an LTI system

We now focus on periodic signals and use this exponential
signal to describe such functions

Recall that a signal x(t) is periodic if there exists a T > 0
such that

x(t + T) = x(t) for all t ∈ R

T is called a period of the signal

The smallest period is denoted as T0 and is called the
fundamental period

4



Introduction to Fourier series

We start by constructing periodic signals using exponential
signals as building blocks

Let us start with the signal

x1(t) = X1ejΩ0t + X−1e−jΩ0t

X1 and X−1 are complex numbers
Ω0 [rad/s] is the fundamental frequency of the signal
The signal has a fundamental period

T0 =
2π
Ω0
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Introduction to Fourier series

We provide the numbers X1 and X−1 to realize the signal
x1(t)

Example: X1 = X−1 = 1/2:

x1(t) = cos(Ω0t)

Example: X1 = X∗−1 = 1
2j :

x1(t) = sin(Ω0t)
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Introduction to Fourier series

What if we add a constant?

x1(t) = X0 + X1ejΩ0t + X−1e−jΩ0t

Signal is still periodic with fundamental period T0
What if we add additional powers of the exponential signal?

xN(t) =
N∑

k=−N
XkejkΩ0t

Signal is still periodic with fundamental period T0
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Introduction to Fourier series

Note the procedure up till now: We provide the Xk’s to
construct xN(t)

Now the other way around
Suppose

we know xN(t)
and we know that xN(t) can be written in the form

xN(t) =
N∑

k=−N

XkejkΩ0t

We do not know the coefficients Xk, however
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Introduction to Fourier series

How do we determine these coefficients?

Step 1: Start with

xN(t) =
N∑

k=−N
XkejkΩ0t

Step 2: Multiply this equation by e−jmΩ0t, m an integer,
|m| ≤ N

e−jmΩ0txN(t) =
N∑

k=−N
Xkej(k−m)Ω0t
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Introduction to Fourier series

Integrate over a single period:∫ t0+T0

t=t0
e−jmΩ0txN(t) dt =

∫ t0+T0

t=t0

N∑
k=−N

Xkej(k−m)Ω0t dt

=
N∑

k=−N
Xk

∫ t0+T0

t=t0
ej(k−m)Ω0t dt

Since ∫ t0+T0

t=t0
ej(k−m)Ω0t dt =

{
T0 m = k

0 m 6= k
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Introduction to Fourier series

We are left ∫ t0+T0

t=t0
e−jmΩ0txN(t) dt = T0Xm

and find

Xm =
1
T0

∫ t0+T0

t=t0
xN(t)e−jmΩ0t dt, m = 0,±1,±2, ...,±N
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Introduction to Fourier series

Conclusion:

A periodic signal xN(t) is given and it is known that it can be
written in the form

xN(t) =
N∑

k=−N
XkejkΩ0t (∗)

The coefficients can be determined as

Xk =
1
T0

∫ t0+T0

t=t0
xN(t)e−jkΩ0t dt, k = 0,±1,±2, ...,±N

The signal of Eq. (∗) is known as a finite Fourier series
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Introduction to Fourier series

Note that xN(t) is a very smooth function of time

It can be differentiated arbitrarily often and the resulting
signal is continuous again

Now what if we have a periodic signal with a discontinuity?

Or what if we have a periodic signal with a derivative that
has a discontinuity?

Or what if we have a periodic signal for which its nth
derivative (n ≥ 1) has a discontinuity?
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The complex exponential Fourier series

To make a chance of representing such signals by
exponential signals, we take an infinite number of
exponential expansion signals

We write

x(t) =
∞∑

k=−∞
XkejkΩ0t

with

Xk =
1
T0

∫ t0+T0

t=t0
xN(t)e−jkΩ0t dt, k = 0,±1,±2, ...

This is the complex exponential Fourier series of the
periodic signal x(t)

14



Convergence of the Fourier series

Some remarks about convergence
When discussing convergence of the Fourier series, the
basic question to answer is:

What happens to the partial sums

xN(t) =
N∑

k=−N

XkejkΩ0t as N→∞?
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Convergence of the Fourier series

Pointwise convergence: Let x(t) be a periodic signal with
fundamental period T0. The signal is piecewise continuous
with a piecewise continuous derivative.

If x(t) is continuous at t = t0, then

x(t0) = lim
N→∞

xN(t0) =
∞∑

k=−∞
XkejkΩ0t0

If x(t) has a jump discontinuity at t = t0 with left limit
x(t−0 ) and right limit x(t+

0 ), then

x(t−0 ) + x(t+
0 )

2
= lim

N→∞
xN(t0) =

∞∑
k=−∞

XkejkΩ0t0
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Convergence of the Fourier series

Other convergence definitions

Uniform convergence:

max
t0≤t≤t0+T0

|x(t)− xN(t)| → 0 as N→∞

Loosely speaking, when the signal xN(t) converges
uniformly to x(t), then the graph of xN(t) “stays close" to
the graph of x(t) on the complete interval t0 ≤ t ≤ t0 + T0
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Convergence of the Fourier series

Convergence in the sense that the average quadratic error
tends to zero as N→∞:

lim
N→∞

1
T0

∫ t0+T0

t=t0
|x(t)− xN(t)|2 dt = 0

Type of convergence depends on the signal

Uniform convergence is the strongest type of convergence.
It implies pointwise and averaged squared error
convergence
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Convergence of the Fourier series

Gibb’s phenomenon

x(t) =

{
1 0<t<1/2,

−1 1/2<t<1
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Parseval’s power relation

Recall that the power of a periodic signal x(t) is given by

Px =
1
T0

∫ t0+T0

t=t0
|x(t)|2 dt

If x(t) is square integrable then Px <∞
For x(t) we have the Fourier series representation

x(t) =
∞∑

k=−∞
XkejkΩ0t
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Parseval’s power relation

For its complex conjugate, we have

x∗(t) =
∞∑

m=−∞
X∗me

−jmΩ0t

Consequently,

|x(t)|2 = x(t)x∗(t)

=
∞∑

k=−∞

∞∑
m=−∞

XkX∗me
j(k−m)Ω0t
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Parseval’s power relation

Substitution gives

Px =
1
T0

∫ t0+T0

t=t0

∞∑
k=−∞

∞∑
m=−∞

XkX∗me
j(k−m)Ω0t dt

=
1
T0

∞∑
k=−∞

∞∑
m=−∞

XkX∗m

∫ t0+T0

t=t0
ej(k−m)Ω0t dt
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Parseval’s power relation

Since ∫ t0+T0

t=t0
ej(k−m)Ω0t dt =

{
T0 m = k

0 m 6= k

we arrive at

Px =
∞∑

k=−∞
|Xk|2

This is Parseval’s power relation
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Parseval’s power relation

Parseval’s power relation stated differently

Write

x(t) =
∞∑

k=−∞
xk(t) with xk(t) = XkejkΩ0t

We have
Pxk = |Xk|2

In words: the power of the signal x(t) is equal to the sum
of powers of its Fourier series components
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Parseval’s power relation

Power line spectrum:

Plot |Xk|2 vs. kΩ0, k = 0,±1,±2, ... .

Magnitude line spectrum:

Plot |Xk| vs. kΩ0, k = 0,±1,±2, ... .

Phase line spectrum:

Plot ∠Xk vs. kΩ0, k = 0,±1,±2, ... .
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Parseval’s power relation

Consider a signal that is square integrable, that is, it has
finite power

Parseval’s power relation

∞∑
k=−∞

|Xk|2 = Px <∞

The sum on the left-hand side converges

Consequently,
|Xk|2 → 0 as k±∞

In words: the Fourier coefficients tend to zero as k→ ±∞

26



Parseval’s power relation

It can be shown that if the signal is absolutely integrable
then

lim
k→∞

Xk = 0

as well. This is the famous Riemann-Lebesgue lemma

Can we say something about how fast the coefficients tend
to zero as k→ ±∞?

27



Parseval’s power relation

For simplicity, consider a signal x(t)

having a jump discontinuity at t = t̃, t0 < t̃ < t0 + T0
Left limit: x(t̃−), right limit: x(t̃+)

No jumps at the end points: x(t0) = x(t0 + T0)

Away from t̃, x(t) has continuous derivatives up to any
desired order
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Parseval’s power relation

For the Fourier coeffcients, we have

Xk =
1
T0

∫ t0+T0

t=t0
x(t)e−jkΩ0t dt

=
1
T0

∫ t̃

t=t0
x(t)e−jkΩ0t dt +

1
T0

∫ t0+T0

t=t̃
x(t)e−jkΩ0t dt
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Parseval’s power relation

First integral. Integration by parts gives

1
T0

∫ t̃

t=t0
x(t)e−jkΩ0t dt =

1
j2πk

e−jkΩ0t0x(t0)

− 1
j2πk

e−jkΩ0 t̃−x(t̃−)

+
1

j2πk

∫ t̃

t=t0
x′(t)e−jkΩ0t dt

where we have used T0Ω0 = 2π
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Parseval’s power relation

Second integral. Integration by parts gives

1
T0

∫ t0+T0

t=t̃
x(t)e−jkΩ0t dt =

1
j2πk

e−jkΩ0 t̃+
x(t̃+)

− 1
j2πk

e−jkΩ0t0x(t0 + T0)

+
1

j2πk

∫ t0+T0

t=t̃
x′(t)e−jkΩ0t dt

where we have used T0Ω0 = 2π
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Parseval’s power relation

Consequently,

Xk =
1

j2πk
e−jkΩ0tx(t)

∣∣∣∣t̃+

t̃−
+

1
j2πk

∫ t0+T0

t=t0
x′(t)e−jkΩ0t dt

Since x(t) has a jump discontinuity at t = t̃, the first term
on the right-hand side does not vanish

We conclude that the Fourier coeffcient Xk must at least
have a 1/k term
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Parseval’s power relation

Now what if x(t) is continuous at t = t̃, but its derivative
has a jump discontinuity at t = t̃?

Since x(t) is continuous at t = t̃, the first term on the
right-hand side now vanishes

In this case, we have

Xk =
1

j2πk

∫ t0+T0

t=t0
x′(t)e−jkΩ0t dt

Follow a similar procedure as above (integrate by parts
again)

In this case, we find that the Fourier coeffcient Xk must at
least have a 1/k2 term
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Parseval’s power relation

Summary:

x(t) has a jump discontinuity at t = t̃:

Xk should at least have a 1/k term

x(t) is continuous, but x′(t) has a jump discontinuity at
t = t̃:

Xk should at least have a 1/k2 term

x(t) and x′(t) are continuous, but x′′(t) has a jump
discontinuity at t = t̃:

Xk should at least have a 1/k3 term

and so on
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Trigonometric Fourier series

We rewrite the complex Fourier series expansion in terms
of cos/sin expansion functions

The analysis is straightforward

x(t) =
∞∑

k=−∞
XkejkΩ0t

=
−1∑

k=−∞
XkejkΩ0t + X0 +

∞∑
k=1

XkejkΩ0t

= X0 +
∞∑
k=1

X−ke−jkΩ0t +
∞∑
k=1

XkejkΩ0t
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Trigonometric Fourier series

We now use Euler’s formula to obtain

x(t) = X0 +
∞∑
k=1

X−k[cos(kΩ0t)− j sin(kΩ0t)]

+
∞∑
k=1

Xk[cos(kΩ0t) + j sin(kΩ0t)]

Grouping the cos- and sin-terms gives

x(t) = X0 + 2
∞∑
k=1

Xk + X−k
2

cos(kΩ0t)

+ 2j
∞∑
k=1

Xk − X−k
2

sin(kΩ0t)
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Trigonometric Fourier series

Finally, we compute

Xk + X−k
2

=
1

2T0

∫ t0+T0

t=t0
x(t)(e−jkΩ0t + ejkΩ0t) dt

=
1
T0

∫ t0+T0

t=t0
x(t) cos(kΩ0t) dt =: ck

j
Xk − X−k

2
=

j
2T0

∫ t0+T0

t=t0
x(t)(e−jkΩ0t − ejkΩ0t) dt

=
1
T0

∫ t0+T0

t=t0
x(t) sin(kΩ0t) dt =: dk
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Trigonometric Fourier series

In conclusion

x(t) = c0 + 2
∞∑
k=1

ck cos(kΩ0t) + dk sin(kΩ0t)

with

ck =
Xk + X−k

2
, k = 0, 1, 2, ...

and

dk = j
Xk − X−k

2
, k = 1, 2, ... .

This is the trigonometric Fourier series
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Fourier series and the Laplace transform

Let x(t) be a periodic signal with fundamental period T0
Consider a one-period restriction of this signal

x1(t) = x(t)[u(t − t0)− u(t − t0 − T0)]

Warning: do not confuse this signal with the partial sum
x1(t)
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Fourier series and the Laplace transform

The Laplace transform of x1(t) is

X1(s) =

∫ ∞
t=−∞

x1(t)e−st dt =

∫ t0+T0

t=t0
x(t)e−st dt

The Fourier expansion coefficient of x(t) is given by

Xk =
1
T0

∫ t0+T0

t=t0
x(t)e−jkΩ0t dt

A comparison with the Laplace transform of x1(t) reveals
that

Xk =
1
T0

X1(s)

∣∣∣∣
s=jkΩ0

, k = 0,±1,±2, ...
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Response of LTI systems to periodic signals

Consider an LTI system with input signal x(t), impulse
response h(t), and output signal y(t)

We have

y(t) =

∫ ∞
τ=−∞

h(τ)x(t − τ) dτ

Finally, let H(s) denote the transfer function of the LTI
system

Input signal x(t): a periodic signal with fundamental period
T0
What is the output?
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Response of LTI systems to periodic signals

Fourier expansion of x(t): x(t) =
∑∞

k=−∞ XkejkΩ0t

For the output signal we have

y(t) =

∫ ∞
τ=−∞

h(τ)x(t − τ) dτ

=

∫ ∞
τ=−∞

h(τ)
∞∑

k=−∞
XkejkΩ0(t−τ) dτ

=
∞∑

k=−∞
XkejkΩ0t

∫ ∞
τ=−∞

h(τ)e−jkΩ0τ dτ

=
∞∑

k=−∞
XkejkΩ0tH(jkΩ0) =

∞∑
k=−∞

YkejkΩ0t

with Yk = XkH(jkΩ0)
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Response of LTI systems to periodic signals

Output signal y(t) is also periodic with fundamental period
T0 and its Fourier coefficients are given by

Yk = XkH(jkΩ0), k = 0,±1,±2, ... .

43


