Signals and Systems

4. The Laplace Transform Part 2

- Contents

The inverse Laplace transform
The steady-state response of an LTI system

- Book:

Sections 3.5, 3.6, 3.7, 3.8

■ Exercises:
3.1, 3.3, 3.4, 3.6, 3.7, 3.8, 3.13, 3.15, 3.17, 3.20, 3.21 (3rd Ed.)
$3.2,3.4,3.5,3.9,3.10,3.13,3.20,3.22,3.25,3.29,3.30$ (2nd Ed.)

The Inverse Laplace Transform

- The two-sided Laplace transform of a signal $x(t)$ is given by

$$
X(s)=\int_{t=-\infty}^{\infty} x(t) e^{-s t} \mathrm{~d} t, \quad s \in \mathrm{ROC}_{x}
$$

- The correspondence between $X(s)+\mathrm{ROC}_{x}$ and $x(t)$ is unique
- Actually, we have already used this property without being very explicit about it (in the previous lecture we used Laplace transform tables)
- We have an explicit expression for the Laplace transform of a signal $x(t)$ producing $X(s)$ along with its ROC
- Is there an explicit expression for the inverse transform?
- In other words, given $X(s)$ and its ROC, is there an explicit expression or operator that produces the time-signal $x(t)$?

The Inverse Laplace Transform

- The answer is yes
- We claim that the inverse Laplace transform is given by

$$
x(t)=\frac{1}{2 \pi \mathrm{j}} \int_{s=\sigma-\mathrm{j} \infty}^{\sigma+\mathrm{j} \infty} X(s) e^{s t} \mathrm{~d} s
$$

where the integration contour is located in ROC_{x}

- This contour is called the Bromwich contour
- We also write

$$
x(t)=\frac{1}{2 \pi \mathrm{j}} \int_{s \in \operatorname{Br}} X(s) e^{s t} \mathrm{~d} s
$$

with

$$
\mathrm{Br}=\left\{s \in \mathrm{ROC}_{x} \mid s=\sigma+\mathrm{j} \Omega,-\infty<\Omega<\infty\right\}
$$

The Inverse Laplace Transform

Thomas John l'Anson Bromwich
Born 1875
Died 1929

- Assuming the Laplace transform $X(s)$ exists
- Causal signals $x(t)$: the Bromwich contour is located within some righthalf plane $=\mathrm{ROC}_{x}$

- Anti-causal signals $x(t)$: the Bromwich contour is located within some left-half plane $=\mathrm{ROC}_{x}$

The Inverse Laplace Transform

- Noncausal signals $x(t)$: the Bromwich contour is located within some strip $=$ ROC $_{x}$

- Let us verify that the proposed inversion formula indeed produces the time-domain signal $x(t)$
- The inversion formula is given by

$$
\frac{1}{2 \pi \mathrm{j}} \int_{s \in \mathrm{Br}} X(s) e^{s t} \mathrm{~d} s \quad \text { with } s \in \mathrm{ROC}_{x}
$$

The Inverse Laplace Transform

- We start by substituting the expression for the Laplace transform in this formula
- We get

$$
\frac{1}{2 \pi \mathrm{j}} \int_{s \in \mathrm{Br}} X(s) e^{s t} \mathrm{~d} s=\frac{1}{2 \pi \mathrm{j}} \int_{s \in \mathrm{Br}} \int_{\tau=-\infty}^{\infty} x(\tau) e^{-s \tau} \mathrm{~d} \tau e^{s t} \mathrm{~d} s
$$

- Interchanging the order of integration results in

$$
\frac{1}{2 \pi \mathrm{j}} \int_{s \in \mathrm{Br}} X(s) e^{s t} \mathrm{~d} s=\frac{1}{2 \pi \mathrm{j}} \int_{\tau=-\infty}^{\infty} x(\tau) \int_{s=\sigma-\mathrm{j} \infty}^{\sigma+\mathrm{j} \infty} e^{s(t-\tau)} \mathrm{d} s \mathrm{~d} \tau
$$

The Inverse Laplace Transform

- Introducing a new variable of integration $p=s-\sigma$, we can write

$$
\begin{aligned}
\frac{1}{2 \pi \mathrm{j}} \int_{s \in \mathrm{Br}} X(s) e^{s t} \mathrm{~d} s & =\frac{1}{2 \pi \mathrm{j}} \int_{\tau=-\infty}^{\infty} x(\tau) \int_{p=-\mathrm{j} \infty}^{\mathrm{j} \infty} e^{(p+\sigma)(t-\tau)} \mathrm{d} p \mathrm{~d} \tau \\
& =\frac{1}{2 \pi \mathrm{j}} \int_{\tau=-\infty}^{\infty} x(\tau) e^{\sigma(t-\tau)} \int_{p=-\mathrm{j} \infty}^{\mathrm{j} \infty} e^{p(t-\tau)} \mathrm{d} p \mathrm{~d} \tau
\end{aligned}
$$

- With $p=\mathrm{j} \Omega(\mathrm{d} p=\mathrm{jd} \Omega)$ this becomes

$$
\frac{1}{2 \pi \mathrm{j}} \int_{s \in \mathrm{Br}} X(s) e^{s t} \mathrm{~d} s=\int_{\tau=-\infty}^{\infty} x(\tau) e^{\sigma(t-\tau)}\left[\frac{1}{2 \pi} \int_{\Omega=-\infty}^{\infty} e^{\mathrm{j} \Omega(t-\tau)} \mathrm{d} \Omega\right] \mathrm{d} \tau
$$

The Inverse Laplace Transform

- Now recall the completeness relation from Lecture 1:

$$
\delta(t)=\frac{1}{2 \pi} \int_{\Omega=-\infty}^{\infty} e^{\mathrm{j} \Omega t} \mathrm{~d} \Omega
$$

- Consequently,

$$
\delta(t-\tau)=\frac{1}{2 \pi} \int_{\Omega=-\infty}^{\infty} e^{j \Omega(t-\tau)} \mathrm{d} \Omega
$$

The Inverse Laplace Transform

- Using this result, we obtain

$$
\frac{1}{2 \pi \mathrm{j}} \int_{s \in \mathrm{Br}} X(s) e^{s t} \mathrm{~d} s=\int_{\tau=-\infty}^{\infty} x(\tau) e^{\sigma(t-\tau)} \delta(t-\tau) \mathrm{d} \tau=x(t)
$$

- Laplace transformation pair
- Forward transformation:

$$
X(s)=\int_{t=-\infty}^{\infty} x(t) e^{-s t} \mathrm{~d} t, \quad s \in \operatorname{ROC}_{x}
$$

- Inverse transformation:

$$
x(t)=\frac{1}{2 \pi \mathrm{j}} \int_{s \in \mathrm{Br}} X(s) e^{s t} \mathrm{~d} s, \quad \mathrm{Br} \in \mathrm{ROC}_{x}
$$

- If the imaginary axis is contained in ROC_{x} then we can restrict the Laplace parameter to the imaginary axis
- Setting $s=\mathrm{j} \Omega$, the Laplace transformation pair becomes
- Forward transformation:

$$
X(\Omega)=\int_{t=-\infty}^{\infty} x(t) e^{-\mathrm{j} \Omega t} \mathrm{~d} t
$$

- Inverse transformation:

$$
x(t)=\frac{1}{2 \pi} \int_{\Omega=-\infty}^{\infty} X(\Omega) e^{\mathrm{j} \Omega t} \mathrm{~d} \Omega
$$

- This transformation pair defines the Fourier transformation (much more on this later)
- Warning! The Fourier transformation defined above is according to the convention used by electrical engineers
- Physicists use the letter i for the imaginary unit and take $s=-\mathrm{i} \Omega$ in the Laplace transform

The Inverse Laplace Transform

- The Fourier transformation pair of a physicist is
- Forward transformation:

$$
X(\Omega)=\int_{t=-\infty}^{\infty} x(t) e^{\mathrm{i} \Omega t} \mathrm{~d} t
$$

- Inverse transformation:

$$
x(t)=\frac{1}{2 \pi} \int_{\Omega=-\infty}^{\infty} X(\Omega) e^{-\mathrm{i} \Omega t} \mathrm{~d} \Omega
$$

- When reading books, papers, reports, etc. check out the convention that the author uses

The Inverse Laplace Transform

- BIBO stability is related to the existence of the Fourier transform
- Specifically, if the system is BIBO stable then $H(\Omega)$ exists

$$
|H(\Omega)|=\left|\int_{t=-\infty}^{\infty} h(t) e^{-\mathrm{j} \Omega t} \mathrm{~d} t\right| \leq \int_{t=-\infty}^{\infty}\left|h(t) e^{-\mathrm{j} \Omega t}\right| \mathrm{d} t \leq \int_{t=-\infty}^{\infty}|h(t)| \mathrm{d} t<\infty
$$

- The converse (existence of $H(\Omega)$ implies BIBO stability) is true under certain conditions
- More on this later (see slides 94-96)

The Inverse Laplace Transform

- Returning to the Laplace transform, we note that any Bromwich contour in the inverse Laplace transform does the job so long as it belongs to the ROC

- To see this, we recall Cauchy's theorem from complex analysis
- Loosely speaking, this theorem states that if $F(s)$ is analytic within a region \mathscr{A} in the complex s-plane, then for any closed curve C belonging to \mathscr{A}, we have

$$
\oint_{s \in C} F(s) \mathrm{d} s=0
$$

The Inverse Laplace Transform

- For a time signal $x(t)$ we know that its Laplace transform $X(s)$ is analytic in its ROC
- The function $e^{s t}$ is also analytic in this region (as a function of s)
- Conclusion: the function $F(s)=X(s) e^{s t}$ is analytic in the ROC of the signal $x(t)$

The Inverse Laplace Transform

- Applying Cauchy's theorem, we have

$$
\oint_{s \in C} X(s) e^{s t} \mathrm{~d} s=0
$$

for any closed curve C belong to the ROC of the signal $x(t)$

The Inverse Laplace Transform

- This result can be used to show that integration along any Bromwich contour belonging to the ROC produces the time-domain signal $x(t)$
- We illustrate this for a causal time-signal $x(t)$ (the analysis for anti- or noncausal signals is similar)
- For a causal time signal, the ROC is some right-half plane in general
- We consider two Bromwich contours Br_{1} and Br_{2} belonging to this region

The Inverse Laplace Transform

- Our claim is that it does not matter along which contour you integrate to get $x(t)$ back
- In other words

$$
\int_{s \in \mathrm{Br}_{1}} X(s) e^{s t} \mathrm{~d} s=\int_{s \in \mathrm{Br}_{2}} X(s) e^{s t} \mathrm{~d} s
$$

with

$$
\operatorname{Br}_{1}=\left\{s \in \mathbb{C} \mid s=\sigma_{1}+\mathrm{j} \Omega, \sigma_{1}>\sigma_{\mathrm{c}},-\infty<\Omega<\infty\right\}
$$

and

$$
\operatorname{Br}_{2}=\left\{s \in \mathbb{C} \mid s=\sigma_{2}+\mathrm{j} \Omega, \sigma_{2}>\sigma_{\mathrm{c}},-\infty<\Omega<\infty\right\}
$$

$\sigma_{2}>\sigma_{1}$

The Inverse Laplace Transform

- To show this, consider the curve

$$
C_{\Omega}=L_{\Omega}^{(1)} \cup C_{\mathrm{up}} \cup L_{\Omega}^{(2)} \cup C_{\mathrm{down}}
$$

which is completely located within the ROC of signal $x(t)$

The Inverse Laplace Transform

- From Cauchy's theorem it follows that

$$
\oint_{s \in C_{\Omega}} X(s) e^{s t} \mathrm{~d} s=0 \quad(*)
$$

or

$$
\int_{s \in L_{\Omega}^{(1)}} X(s) e^{s t} \mathrm{~d} s+\int_{s \in C_{\mathrm{up}}} X(s) e^{s t} \mathrm{~d} s+\int_{s \in L_{\Omega}^{(2)}} X(s) e^{s t} \mathrm{~d} s+\int_{s \in C_{\mathrm{down}}} X(s) e^{s t} \mathrm{~d} s=0
$$

The Inverse Laplace Transform

- Clearly,

$$
\lim _{\Omega \rightarrow \infty} \int_{s \in L_{\Omega}^{(1)}} X(s) e^{s t} \mathrm{~d} s=\int_{s \in \mathrm{Br}_{1}} X(s) e^{s t} \mathrm{~d} s
$$

and

$$
\lim _{\Omega \rightarrow \infty} \int_{s \in L_{\Omega}^{(2)}} X(s) e^{s t} \mathrm{~d} s=-\int_{s \in \mathrm{Br}_{2}} X(s) e^{s t} \mathrm{~d} s
$$

The Inverse Laplace Transform

- Furthermore, it can be shown that

$$
\lim _{\Omega \rightarrow \infty} \int_{s \in C_{\mathrm{up}}} X(s) e^{s t} \mathrm{~d} s=0
$$

and

$$
\lim _{\Omega \rightarrow \infty} \int_{s \in C_{\mathrm{down}}} X(s) e^{s t} \mathrm{~d} s=0
$$

- Taking the limit $\Omega \rightarrow \infty$ in Eq. (*) and putting all limits together, we find

$$
\int_{s \in \mathrm{Br}_{1}} X(s) e^{s t} \mathrm{~d} s-\int_{s \in \mathrm{Br}_{2}} X(s) e^{s t} \mathrm{~d} s=0
$$

which is what we wanted to show

- To determine the inverse Laplace transform of some s-domain function $X(s)$, we continu the integrand of the inverse transform into the complex s-plane and use techniques from complex analysis
- Although the approach that we follow can be applied to a wide class of Laplace-domain functions $X(s)$, we restrict ourselves to cases where $X(s)$ is a strictly proper rational function of the form

$$
X(s)=\frac{p_{M}(s)}{q_{N}(s)}
$$

with $p_{M}(s)$ is a polynomial in s of degree M and $q_{N}(s)$ is a polynomial in s of degree N

- The rational function $X(s)$ is called improper if $M>N$
- The rational function $X(s)$ is called proper if $M \leq N$
- The rational function $X(s)$ is called strictly proper if $M<N$

- Examples

$$
\begin{array}{ll}
X(s)=\frac{s^{3}+4}{s^{2}+1} & \text { is improper } \\
X(s)=\frac{s}{s+1} & \text { is proper }
\end{array}
$$

and

$$
X(s)=\frac{s}{s^{2}+1} \quad \text { is strictly proper }
$$

- Furthermore, let $X(s)$ have
* m poles located to the left of the Bromwich contour and
* n poles located to the right of the Bromwich contour

The Inverse Laplace Transform

- If $x(t)$ is causal then $n=0$: there are no poles to the right of the Bromwich contour, since for a causal signal $X(s)$ is analytic to the right of the Bromwich contour

The Inverse Laplace Transform

- If $x(t)$ is anti-causal then $m=0$: there are no poles to the left of the Bromwich contour, since for an anti-causal signal $X(s)$ is analytic to the left of the Bromwich contour

The Inverse Laplace Transform

- To evaluate the inversion integral, we distinguish between two cases
- Case 1: $t<0$
- In this case we evaluate the integral by considering the closed curve $C_{\Omega}=$ $L_{\Omega} \cup C_{\Omega}^{\mathrm{r}}$ shown below

The Inverse Laplace Transform

- The curve C_{Ω} is traversed clockwise and encloses all n poles of $X(s)$ located to the right of the Bromwich contour
- We can always achieve this by making Ω sufficiently large
- Applying the residue theorem, we find

$$
\oint_{s \in C_{\Omega}} X(s) e^{s t} \mathrm{~d} s=-2 \pi \mathrm{j} \sum_{p=1}^{n} \operatorname{Res}\left[X(s) e^{s t}, s_{p}\right] \quad(* *)
$$

where s_{p} is the p th pole located to the right of the Bromwich contour

- Recall that the residue of $X(s) e^{s t}$ at a pole of order k at $s=s_{p}$ is computed as follows:

1. Construct the function $\varphi(s)=\left(s-s_{p}\right)^{k} X(s) e^{s t}$
2. The residue of $X(s) e^{s t}$ at $s=s_{p}$ is given by

$$
\operatorname{Res}\left[X(s) e^{s t}, s_{p}\right]=\left.\frac{\varphi^{(k-1)}(s)}{(k-1)!}\right|_{s=s_{p}}
$$

The Inverse Laplace Transform

- The reason for considering the indicated curve C_{Ω} is that for the Laplacedomain functions $X(s)$ considered here (strictly proper rational functions), it can be shown that

$$
\lim _{\Omega \rightarrow \infty} \int_{s \in C_{\Omega}^{r}} X(s) e^{s t} \mathrm{~d} s=0 \quad \text { for } t<0
$$

- Taking the limit $\Omega \rightarrow \infty$ in Eq. ($* *$) and realizing that

$$
\lim _{\Omega \rightarrow \infty} \int_{s \in L_{\Omega}} X(s) e^{s t} \mathrm{~d} s=\int_{s \in \mathrm{Br}} X(s) e^{s t} \mathrm{~d} s
$$

we find that

$$
\int_{s \in \operatorname{Br}} X(s) e^{s t} \mathrm{~d} s=-2 \pi \mathrm{j} \sum_{p=1}^{n} \operatorname{Res}\left[X(s) e^{s t}, s_{p}\right] \quad \text { for } t<0
$$

The Inverse Laplace Transform

- Consequently,

$$
x(t)=-\sum_{p=1}^{n} \operatorname{Res}\left[X(s) e^{s t}, s_{p}\right] \quad \text { for } t<0
$$

where the s_{p} are the distinct poles of $X(s)$ located to the right of the Bromwich contour

The Inverse Laplace Transform

- For a causal signal, $X(s)$ has no poles to the right of the Bromwich contour and the inversion formula gives

$$
x(t)=0 \quad \text { for } t<0
$$

as it should be, of course

The Inverse Laplace Transform

- Case 2: $t>0$
- In this case we evaluate the integral by considering the closed curve $C_{\Omega}=$ $L_{\Omega} \cup C_{\Omega}^{1}$ shown below

The Inverse Laplace Transform

- The curve C_{Ω} is traversed counterclockwise and encloses all m poles of $X(s)$ located to the left of the Bromwich contour
- We can always achieve this by making Ω sufficiently large
- Applying the residue theorem, we find

$$
\oint_{s \in C_{\Omega}} X(s) e^{s t} \mathrm{~d} s=2 \pi \mathrm{j} \sum_{p=1}^{m} \operatorname{Res}\left[X(s) e^{s t}, s_{p}\right] \quad(* * *)
$$

where s_{p} is the p th pole located to the left of the Bromwich contour

The Inverse Laplace Transform

- The reason for considering the indicated curve C_{Ω} is that for the Laplacedomain functions $X(s)$ consider here (strictly proper rational functions), it can be shown that

$$
\lim _{\Omega \rightarrow \infty} \int_{s \in C_{\Omega}^{1}} X(s) e^{s t} \mathrm{~d} s=0 \quad \text { for } t>0
$$

- Taking the limit $\Omega \rightarrow \infty$ in Eq. ($* * *$) and realizing that

$$
\lim _{\Omega \rightarrow \infty} \int_{s \in L_{\Omega}} X(s) e^{s t} \mathrm{~d} s=\int_{s \in \mathrm{Br}} X(s) e^{s t} \mathrm{~d} s
$$

we find that

$$
\int_{s \in \mathrm{Br}} X(s) e^{s t} \mathrm{~d} s=2 \pi \mathrm{j} \sum_{p=1}^{m} \operatorname{Res}\left[X(s) e^{s t}, s_{p}\right] \quad \text { for } t>0
$$

- Consequently,

$$
x(t)=\sum_{p=1}^{m} \operatorname{Res}\left[X(s) e^{s t}, s_{p}\right] \quad \text { for } t>0
$$

where the s_{p} are the distinct poles of $X(s)$ located to the left of the Bromwich contour

The Inverse Laplace Transform

- For an anti-causal signal, $X(s)$ has no poles to the left of the Bromwich contour and the inversion formula gives

$$
x(t)=0 \quad \text { for } t>0
$$

as it should be, of course

The Inverse Laplace Transform

- Example 1 Let $X(s)=1 / s$ be the Laplace transform of a time signal $x(t)$ with the half-plane $\operatorname{Re}(s)>0$ as its ROC
- We already know what the time-function is, of course, but let's compute it using residue calculus
- $X(s)$ has a simple pole at $s=0$ and is analytic on its ROC
- The Bromwich contour must be located within the ROC

The Inverse Laplace Transform

- Since there are no poles to the right of the Bromwich contour, we find $x(t)=0$ for $t<0$
- The simple pole at $s=0$ is located to the left of the Bromwich contour outside the ROC, of course

- Computing its residue, we find

$$
\varphi(s)=s X(s) e^{s t}=e^{s t} \quad \text { and } \quad \operatorname{Res}\left[\frac{e^{s t}}{s}, 0\right]=\left.\frac{\varphi(s)}{0!}\right|_{s=0}=\frac{1}{1}=1
$$

- and the time signal is

$$
x(t)=1 \quad \text { for } t>0
$$

- Conclusion: $x(t)=u(t)$

The Inverse Laplace Transform

- What happens at $t=0$?
- Using the inversion formula, we find

$$
x(0)=\frac{1}{2 \pi \mathrm{j}} \int_{s \in \mathrm{Br}} \frac{1}{s} \mathrm{~d} s=\lim _{\substack{\Omega_{1} \rightarrow \infty \\ \Omega_{2} \rightarrow \infty}} \int_{\sigma-\mathrm{j} \Omega_{1}}^{\sigma+\mathrm{j} \Omega_{2}} \frac{1}{s} \mathrm{~d} s
$$

- By changing the ratio Ω_{1} / Ω_{2} we can give the integral any value that we want
- Setting $\Omega_{1} / \Omega_{2}=1$ (as is usual), the resulting integral is known as a Cauchy principal value integral
- With this choice, we have

$$
\begin{aligned}
x(0) & =\frac{1}{2 \pi \mathrm{j}} f_{s \in \operatorname{Br}} \frac{1}{s} \mathrm{~d} s=\frac{1}{2 \pi \mathrm{j}} \lim _{\Omega \rightarrow \infty}[\ln |s|+\mathrm{j} \arg (s)]_{s=\sigma-\mathrm{j} \Omega}^{\sigma+\mathrm{j} \Omega} \\
& =\frac{1}{2 \pi \mathrm{j}} \cdot 2 \mathrm{j} \cdot \lim _{\Omega \rightarrow \infty} \arctan \left(\frac{\Omega}{\sigma}\right) \\
& =\frac{1}{2 \pi \mathrm{j}} \cdot 2 \mathrm{j} \cdot \frac{\pi}{2}=\frac{1}{2}
\end{aligned}
$$

The Inverse Laplace Transform

- For this reason, the Heaviside unit step function is often defined as

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ \frac{1}{2} & \text { for } t=0 \\ 1 & \text { for } t>0\end{cases}
$$

- The above result can be generalized to a general discontinuous signals
- We have

$$
\frac{x(t+0)+x(t-0)}{2}=\frac{1}{2 \pi \mathrm{j}} \oint_{s \in \mathrm{Br}} X(s) e^{s t} \mathrm{~d} s
$$

- Example 2 Again $X(s)=1 / s$, but this time the ROC is $\{s \in \mathbb{C} \mid \operatorname{Re}(s)<0\}$
- The ROC is now a left-half plane
- The Bromwich contour is located inside the ROC
- There are no poles to the left of the Bromwich contour
- Consequently,

$$
x(t)=0 \quad \text { for } t>0
$$

- The simple pole at $s=0$ is now located to the right of the Bromwich contour and contributes for $t<0$
- Using the residue formula for $t<0$, we find

$$
x(t)=-1 \quad \text { for } t<0
$$

Don't forget the minus sign!

- In total: $x(t)=-u(-t)$

The Inverse Laplace Transform

- Example 3 Suppose $X(s)=1 / s^{2}$ with $\operatorname{Re}(s)>0$ as its ROC
- What is the corresponding time signal?
- The Bromwich contour must be located within the ROC
- There are no poles to the right of the Bromwich contour
- Consequently,

$$
x(t)=0 \quad \text { for } t<0
$$

The Inverse Laplace Transform

- For $t>0$ we encounter a pole of order 2 at the origin
- We compute its residue
- First, construct $\varphi(s)$:

$$
\varphi(s)=s^{2} X(s) e^{s t}=e^{s t}
$$

- The residue at $s=0$ is given by

$$
\operatorname{Res}\left[X(s) e^{s t}, 0\right]=\left.\frac{\varphi^{(1)}(s)}{1!}\right|_{s=0}
$$

- Computing the derivative gives

$$
\varphi^{(1)}(s)=\frac{\mathrm{d}}{\mathrm{~d} s} e^{s t}=t e^{s t}
$$

- and the residue is found as

$$
\operatorname{Res}\left[X(s) e^{s t}, 0\right]=\left.\frac{t e^{s t}}{1!}\right|_{s=0}=t
$$

- Substitution in the residue formula for $t>0$ gives

$$
x(t)=t \quad \text { for } t>0
$$

- Conclusion: $x(t)=r(t)$

The Inverse Laplace Transform

- Example 4 Suppose

$$
X(s)=\frac{2}{1-s^{2}}
$$

with an ROC given by $\operatorname{ROC}_{x}=\{s \in \mathbb{C}| | \operatorname{Re}(s) \mid<1\}$

- What is the corresponding time signal $x(t)$?
- As always, the Bromwich contour is located within the ROC

The Inverse Laplace Transform

- $X(s)$ has two simple poles: one at $s=-1$ and one at $s=+1$
- The pole at $s=1$ is located to the right of the Bromwich contour and contributes for $t<0$
- The pole at $s=-1$ is located to the left of the Bromwich contour and contributes for $t>0$

The Inverse Laplace Transform

- To compute the time-domain signal for $t<0$, we compute the residue at $s=1$
- First, determine the φ-function

$$
\varphi(s)=(s-1) X(s) e^{s t}=-2 \frac{e^{s t}}{s+1}
$$

- The residue of $X(s) e^{s t}$ at $s=1$ now follows as

$$
\operatorname{Res}\left[X(s) e^{s t}, 1\right]=\left.\frac{\varphi(s)}{0!}\right|_{s=1}=-e^{t}
$$

- Substitution in the residue formula for $t<0$ gives $x(t)=e^{t}$ for $t<0$

The Inverse Laplace Transform

- To determine the time-domain signal for $t>0$, we compute the residue at $s=-1$
- First, the φ-function

$$
\varphi(s)=(s+1) X(s) e^{s t}=-2 \frac{e^{s t}}{s-1}
$$

- The residue of $X(s) e^{s t}$ at $s=-1$ is

$$
\operatorname{Res}\left[X(s) e^{s t},-1\right]=\left.\frac{\varphi(s)}{0!}\right|_{s=-1}=e^{-t}
$$

- Substitution in the residue formula for $t>0$ gives $x(t)=e^{-t}$ for $t>0$
- Conclusion: $x(t)=e^{-|t|}$

The Inverse Laplace Transform

- To evaluate the inversion formula, we have restricted ourselves to strictly proper rational functions
- However, contour integration techniques can be applied to a much wider class of functions
- For example, suppose that the transfer function of a causal LTI system is given by

$$
H(s)=\frac{1}{\sqrt{s}} \quad \text { with } \quad \operatorname{ROC}_{h}=\{s \in \mathbb{C} \mid \operatorname{Re}(s)>0\}
$$

The Inverse Laplace Transform

- Using contour integration, it is possible to show that the corresponding impulse response is

$$
h(t)=\frac{1}{\sqrt{\pi t}} u(t)
$$

- We will not consider such signals in this course $(H(s)$ is not a rational function)
- As an aside: Is this LTI system BIBO stable?
- In our analysis, we have restricted ourselves to strictly proper rational Laplace domain functions

$$
H(s)=\frac{p_{M}(s)}{q_{N}(s)}
$$

- $p_{M}(s)$ is a polynomial of degree M
- $q_{N}(s)$ is a polynomial of degree N
- $M<N$

The Inverse Laplace Transform

- To explain why this covers many cases of practical interest, we return to the ordinary differential equation

$$
\begin{aligned}
& \left(a_{N} \frac{\mathrm{~d}^{N}}{\mathrm{~d} t^{N}}+a_{N-1} \frac{\mathrm{~d}^{N-1}}{\mathrm{~d} t^{N-1}}+\ldots+a_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+a_{0}\right) y(t)= \\
& \quad\left(b_{M} \frac{\mathrm{~d}^{M}}{\mathrm{~d} t^{M}}+b_{M-1} \frac{\mathrm{~d}^{M-1}}{\mathrm{~d} t^{M-1}}+\ldots+b_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+b_{0}\right) x(t)
\end{aligned}
$$

which holds for $t>0^{-}$and has to be supplemented by a set of initial conditions (see Lecture 2)

The Inverse Laplace Transform

- We note that the coefficients a_{i} and b_{j} are all real-valued
- For vanishing initial conditions, the solution of the above equation is called the zero-state response
- For vanishing initial conditions, the system that is described by the differential equation is LTI

The Inverse Laplace Transform

- Applying a one-sided Laplace transformation to the differential equation and taking the vanishing initial conditions into account, we find

$$
\left(a_{N} s^{N}+a_{N-1} s^{N-1}+\ldots+a_{1} s+a_{0}\right) Y(s)=\left(b_{M} s^{M}+b_{M-1} s^{N-1}+\ldots+b_{1} s+b_{0}\right) X(s)
$$

- or

$$
q_{N}(s) Y(s)=p_{M}(s) X(s)
$$

The Inverse Laplace Transform

- with

$$
p_{M}(s)=b_{M} s^{M}+b_{M-1} s^{N-1}+\ldots+b_{1} s+b_{0}
$$

and

$$
q_{N}(s)=a_{N} s^{N}+a_{N-1} s^{N-1}+\ldots+a_{1} s+a_{0}
$$

The Inverse Laplace Transform

- The transfer function of the LTI system is

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{p_{M}(s)}{q_{N}(s)},
$$

which is a rational function in s

- We repeat
* For $M>N$ the transfer function is an improper rational function
* For $M \leq N$ the transfer function is a proper rational function
* For $M<N$ the transfer function is a strictly proper rational function

The Inverse Laplace Transform

- Now it can be shown that if H is proper or improper then it can always be written as

$$
H(s)=R_{M-N}(s)+\frac{S(s)}{T(s)}
$$

- $R_{M-N}(s)$ is a polynomial in s of degree $M-N$
- S and T are polynomials such that the rational function S / T is strictly proper

The Inverse Laplace Transform

- Example 1

$$
H(s)=\frac{s}{s+1}
$$

is a proper rational function, which can be written as

$$
H(s)=1-\frac{1}{s+1}
$$

- In this example, $R_{0}(s)=1$ and $-1 /(s+1)$ is strictly proper

- Example 2

$$
H(s)=\frac{s^{3}}{s+4}
$$

is an improper rational function, which can be written as

$$
H(s)=s^{2}-4 s+16-\frac{64}{s+4}
$$

- In this example, $R_{2}(s)=s^{2}-4 s+16$ and $-64 /(s+4)$ is strictly proper

The Inverse Laplace Transform

- Time-domain signals can now be obtained using residue calculus and by identifying powers of s with derivatives in time (constants transform into Dirac distributions)
- Another approach is to expand strictly proper rational functions in partial fractions such that we can use the known transforms of standard signals to retrieve the corresponding time signals
- How to expand depends on the roots of the denominator polynomial
- We illustrate for a denominator polynomial that is quadratic

The Inverse Laplace Transform

- Two distinct roots (possibly complex)
- Suppose $H(s)$ is a strictly proper transfer function

$$
H(s)=\frac{N(s)}{\left(s+p_{1}\right)\left(s+p_{2}\right)}, \quad s \in \mathrm{ROC}_{h}, p_{1} \neq p_{2}
$$

- $N(s)$ is a polynomial of degree ≤ 1 with real coefficients
- The partial fraction expansion of H is

$$
H(s)=\frac{A_{1}}{s+p_{1}}+\frac{A_{2}}{s+p_{2}}
$$

- To find A_{1} and A_{2}, multiply $H(s)$ by $\left(s+p_{1}\right)\left(s+p_{2}\right)$. This gives

$$
N(s)=A_{1}\left(s+p_{2}\right)+A_{2}\left(s+p_{1}\right)
$$

The Inverse Laplace Transform

- Setting $s=-p_{1}$, we obtain

$$
A_{1}=\frac{N\left(-p_{1}\right)}{p_{2}-p_{1}}
$$

- Setting $s=-p_{2}$, we obtain

$$
A_{2}=\frac{N\left(-p_{2}\right)}{p_{1}-p_{2}}
$$

- If p_{1} and p_{2} are real, the time-domain signal is

$$
h(t)=\left(A_{1} e^{-p_{1} t}+A_{2} e^{-p_{2} t}\right) u(t)
$$

- Example Suppose

$$
H(s)=\frac{1}{(s+1)(s+4)}=\frac{A_{1}}{s+1}+\frac{A_{2}}{s+4}
$$

- Here, $N(s)=1, p_{1}=1$, and $p_{2}=4$
- We find $A_{1}=1 /(4-1)=1 / 3$ and $A_{2}=1 /(1-4)=-1 / 3$, and

$$
H(s)=\frac{1}{3}\left(\frac{1}{s+1}-\frac{1}{s+4}\right)
$$

The Inverse Laplace Transform

- The impulse response is

$$
h(t)=\frac{1}{3}\left(e^{-t}-e^{-4 t}\right) u(t)
$$

- If p_{1} and p_{2} are complex, then they have to be the complex conjugate of each other, since the coefficients of the denominator polynomial are realvalued
- We write

$$
p_{1}=a-\mathrm{j} \Omega_{0}=p_{2}^{*} \quad a, \Omega_{0} \in \mathbb{R},
$$

where the asterisk denotes complex conjugation

- Recall that the coefficients of the nominator polynomial $N(s)$ are also realvalued

The Inverse Laplace Transform

- Consequently, $N^{*}(s)=N\left(s^{*}\right)$ and

$$
A_{2}^{*}=\frac{N^{*}\left(-p_{2}\right)}{p_{1}^{*}-p_{2}^{*}}=\frac{N\left(-p_{2}^{*}\right)}{p_{2}-p_{1}}=\frac{N\left(-p_{1}\right)}{p_{2}-p_{1}}=A_{1}
$$

- With $A_{1}=A=A_{2}^{*}$, our partial fraction expansion becomes

$$
\frac{N(s)}{(s+a)^{2}+\Omega_{0}^{2}}=\frac{N(s)}{(s+\underbrace{a-\mathrm{j} \Omega_{0}}_{p_{1}})(s+\underbrace{a+\mathrm{j} \Omega_{0}}_{p_{2}})}=\frac{A}{s+a-\mathrm{j} \Omega_{0}}+\frac{A^{*}}{s+a+\mathrm{j} \Omega_{0}}
$$

The Inverse Laplace Transform

- The corresponding time signal is

$$
h(t)=A e^{-a t} e^{\mathrm{j} \Omega_{0} t} u(t)+A^{*} e^{-a t} e^{-\mathrm{j} \Omega_{0} t} u(t)=2 e^{-a t} \operatorname{Re}\left(A e^{\mathrm{j} \Omega_{0} t}\right) u(t)
$$

- Cartesian decomposition of the complex number A :

$$
A=A_{\mathrm{r}}+\mathrm{j} A_{\mathrm{i}}, \quad A_{\mathrm{r}}=\operatorname{Re}(A), \quad A_{\mathrm{i}}=\operatorname{Im}(A)
$$

- The time signal is

$$
h(t)=2 e^{-a t}\left[A_{\mathrm{r}} \cos \left(\Omega_{0} t\right)-A_{\mathrm{i}} \sin \left(\Omega_{0} t\right)\right] u(t)
$$

- Polar decomposition of the complex number A :

$$
A=|A| e^{\mathrm{j} \theta}
$$

- The time signal is

$$
h(t)=2|A| e^{-a t} \cos \left(\Omega_{0} t+\theta\right) u(t)
$$

- Both expression describe the same signal, of course

The Inverse Laplace Transform

- Coinciding real roots
- Suppose that the Laplace domain function is of the form

$$
H(s)=\frac{N(s)}{(s+\alpha)^{2}}
$$

- In this case, H has a double real root at $s=-\alpha$

The Inverse Laplace Transform

- Its partial fraction expansion is

$$
H(s)=\frac{N(s)}{(s+\alpha)^{2}}=\frac{a}{(s+\alpha)^{2}}+\frac{b}{s+\alpha}
$$

- To find a and b, we multiply by $(s+\alpha)^{2}$

The Inverse Laplace Transform

- We obtain

$$
N(s)=a+b(s+\alpha)
$$

- Setting $s=-\alpha$, we find $a=N(-\alpha)$

The Inverse Laplace Transform

- Substitution now gives

$$
N(s)-N(-\alpha)=b(s+\alpha)
$$

- Selecting a value for $s \neq-\alpha$ gives b
- For example, if $\alpha \neq 0$ we can take $s=0$ and b follows as

$$
b=\frac{N(0)-N(-\alpha)}{\alpha}
$$

- The corresponding time signal is

$$
h(t)=\left(a t e^{-\alpha t}+b e^{-\alpha t}\right) u(t)
$$

- Example Let

$$
H(s)=\frac{4}{s(s+2)^{2}}
$$

- Its partial fraction expansion is

$$
H(s)=\frac{4}{s(s+2)^{2}}=\frac{A}{s}+\frac{B}{(s+2)^{2}}+\frac{C}{s+2}
$$

- Multiplication by $s(s+2)^{2}$ gives

$$
4=(A+C) s^{2}+(4 A+B+2 C) s+4 A
$$

- Equating equal powers of s gives

$$
\begin{array}{r}
A+C=0 \\
4 A+B+2 C=0 \\
4 A=4
\end{array}
$$

from which it follows that $A=1, B=-2$, and $C=-1$

The Steady-State Response

- We are given a causal LTI system with a rational transfer function $H(s)$ and ROC_{x} as its region of convergence
- Also given is that the Fourier transform $H(\Omega)$ exists
- The system is then BIBO stable
- The existence of the Fourier transform implies BIBO stability for such a system

The Steady-State Response

- Let's analyze
- The ROC of a causal system is some right-half plane

The Steady-State Response

- The $j \Omega$-axis belongs to the ROC, since $H(\Omega)$ exists
- This implies that all poles of $H(s)$ are located in the left-half of the complex s-plane
- The time signals that correspond to these poles are all exponentially decaying as time increases
- Consequently, $h(t)$ is absolutely integrable and the system is BIBO stable

The Steady-State Response

- Let $y(t)$ be the output signal of a causal LTI system due to a causal input signal
- The output signal is made up of a transient response and a steady-state response
- Transient response: signal due to the inertia of the system
- Steady-state response: signal that remains if you wait for a "sufficiently long" time (after all transients have essentially vanished)
- By studying the poles of the Laplace transform of $y(t)$, we can conclude whether or not such a steady-state response exists

The Steady-State Response

- Observations (use a Laplace transform table, if necessary):

1. A pole in the right-half of the complex s-plane corresponds to a time signal that grows exponentially in time (irrespective of the order of the pole)
2. A pole in the left-half of the complex s-plane corresponds to a time signal that exponentially decays to zero (irrespective of the order of the pole)
3. A pole on the imaginary axis with an order larger than one corresponds to a time signal that shows polynomial growth in time
4. A simple pole on the imaginary axis corresponds to a signal that remains bounded in time

The Steady-State Response

- Given these observations, we conclude that a steady-state response exists if
- $Y(s)$ has no poles in the right-half of the complex s-plane and no poles with an order larger than one on the imaginary axis
- If all poles of $Y(s)$ are in the left-half of the complex s-plane then the steady-state response vanishes

The Steady-State Response

Rigoreous proofs of the many properties of the Laplace transform (Abel's theorem, for example), the existence of the abscissa of convergence, etc. can be found in
P. Henrici, Applied and Computational Analysis, Vol. 2, Wiley Classics Library, New York, 1991
J. E. Marsden and M. J. Hoffman, Basic Complex Analysis, 2nd Ed., W. H. Freeman and Company, New York, 1987
W. R. LePage, Complex Variables and the Laplace Transform for Engineers, Dover Inc., New York, 1980.

