Signals and Systems

4. The Laplace Transform Part 2

1

Contents

The inverse Laplace transform The steady-state response of an LTI system

Book:

Sections 3.5, 3.6, 3.7, 3.8

Exercises:

3.1, 3.3, 3.4, 3.6, 3.7, 3.8, 3.13, 3.15, 3.17, 3.20, 3.21 (3rd Ed.) 3.2, 3.4, 3.5, 3.9, 3.10, 3.13, 3.20, 3.22, 3.25, 3.29, 3.30 (2nd Ed.)

• The two-sided Laplace transform of a signal x(t) is given by

$$X(s) = \int_{t=-\infty}^{\infty} x(t)e^{-st} dt, \qquad s \in \operatorname{ROC}_{x}$$

- The correspondence between $X(s) + ROC_x$ and x(t) is unique
- Actually, we have already used this property without being very explicit about it (in the previous lecture we used Laplace transform tables)

- We have an explicit expression for the Laplace transform of a signal x(t)producing X(s) along with its ROC
- Is there an explicit expression for the *inverse* transform?
- In other words, given *X*(*s*) and its ROC, is there an explicit expression or operator that produces the time-signal x(t)?

- The answer is yes
- We claim that the inverse Laplace transform is given by

$$x(t) = \frac{1}{2\pi j} \int_{s=\sigma-j\infty}^{\sigma+j\infty} X(s) e^{st} ds,$$

where the integration contour is located in ROC_x

- This contour is called the *Bromwich contour*
- We also write

$$x(t) = \frac{1}{2\pi j} \int_{s \in Br} X(s) e^{st} ds$$

with

Br = {
$$s \in ROC_x | s = \sigma + j\Omega, -\infty < \Omega < \infty$$
}

7

Thomas John l'Anson Bromwich Born 1875 Died 1929

- Assuming the Laplace transform *X*(*s*) exists
- *Causal signals x(t)*: the Bromwich contour is located within some *right-half plane* = ROC_x

• *Anti-causal signals* x(t): the Bromwich contour is located within some *left-half plane* = ROC_x

• Noncausal signals x(t): the Bromwich contour is located within some strip = ROC_x

- Let us verify that the proposed inversion formula indeed produces the time-domain signal x(t)
- The inversion formula is given by

$$\frac{1}{2\pi j} \int_{s \in Br} X(s) e^{st} ds \quad \text{with } s \in \text{ROC}_x$$

- We start by substituting the expression for the Laplace transform in this formula
- We get

$$\frac{1}{2\pi j} \int_{s \in Br} X(s) e^{st} ds = \frac{1}{2\pi j} \int_{s \in Br} \int_{\tau = -\infty}^{\infty} x(\tau) e^{-s\tau} d\tau e^{st} ds$$

• Interchanging the order of integration results in

$$\frac{1}{2\pi j} \int_{s\in Br} X(s) e^{st} ds = \frac{1}{2\pi j} \int_{\tau=-\infty}^{\infty} x(\tau) \int_{s=\sigma-j\infty}^{\sigma+j\infty} e^{s(t-\tau)} ds d\tau$$

• Introducing a new variable of integration $p = s - \sigma$, we can write $\frac{1}{2\pi j} \int_{s \in Br} X(s) e^{st} ds = \frac{1}{2\pi j} \int_{\tau = -\infty}^{\infty} x(\tau) \int_{p = -j\infty}^{j\infty} e^{(p+\sigma)(t-\tau)} dp d\tau$ $= \frac{1}{2\pi j} \int_{\tau = -\infty}^{\infty} x(\tau) e^{\sigma(t-\tau)} \int_{p = -j\infty}^{j\infty} e^{p(t-\tau)} dp d\tau$

• With $p = j\Omega$ (d $p = jd\Omega$) this becomes

$$\frac{1}{2\pi j} \int_{s \in Br} X(s) e^{st} ds = \int_{\tau = -\infty}^{\infty} x(\tau) e^{\sigma(t-\tau)} \left[\frac{1}{2\pi} \int_{\Omega = -\infty}^{\infty} e^{j\Omega(t-\tau)} d\Omega \right] d\tau$$

• Now recall the *completeness relation* from Lecture 1:

$$\delta(t) = \frac{1}{2\pi} \int_{\Omega = -\infty}^{\infty} e^{j\Omega t} \,\mathrm{d}\Omega$$

• Consequently,

$$\delta(t-\tau) = \frac{1}{2\pi} \int_{\Omega=-\infty}^{\infty} e^{j\Omega(t-\tau)} \,\mathrm{d}\Omega$$

• Using this result, we obtain

$$\frac{1}{2\pi j} \int_{s \in Br} X(s) e^{st} ds = \int_{\tau = -\infty}^{\infty} x(\tau) e^{\sigma(t-\tau)} \delta(t-\tau) d\tau = x(t)$$

- Laplace transformation pair
- Forward transformation:

$$X(s) = \int_{t=-\infty}^{\infty} x(t)e^{-st} dt, \qquad s \in \operatorname{ROC}_{x}$$

• Inverse transformation:

$$x(t) = \frac{1}{2\pi j} \int_{s \in Br} X(s) e^{st} ds, \qquad Br \in ROC_x$$

- If the imaginary axis is contained in ROC_{*x*} then we can restrict the Laplace parameter to the imaginary axis
- Setting $s = j\Omega$, the Laplace transformation pair becomes

• Forward transformation:

$$X(\Omega) = \int_{t=-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

• Inverse transformation:

$$x(t) = \frac{1}{2\pi} \int_{\Omega = -\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$$

• This transformation pair defines the *Fourier transformation* (much more on this later)

- **Warning!** The Fourier transformation defined above is according to the convention used by electrical engineers
- Physicists use the letter i for the imaginary unit and take $s = -i\Omega$ in the Laplace transform

- The Fourier transformation pair of a physicist is
- Forward transformation:

$$X(\Omega) = \int_{t=-\infty}^{\infty} x(t) e^{i\Omega t} dt$$

• Inverse transformation:

$$x(t) = \frac{1}{2\pi} \int_{\Omega = -\infty}^{\infty} X(\Omega) e^{-i\Omega t} d\Omega$$

• When reading books, papers, reports, etc. check out the convention that the author uses

- BIBO stability is related to the existence of the Fourier transform
- Specifically, if the system is BIBO stable then $H(\Omega)$ exists \bullet

$$|H(\Omega)| = \left| \int_{t=-\infty}^{\infty} h(t) e^{-j\Omega t} \, \mathrm{d}t \right| \le \int_{t=-\infty}^{\infty} \left| h(t) e^{-j\Omega t} \right| \, \mathrm{d}t \le \int_{t=-\infty}^{\infty} |h(t)| \, \mathrm{d}t < \infty$$

- The converse (existence of $H(\Omega)$ implies BIBO stability) is true under cer- \bullet tain conditions
- More on this later (see slides 94 96)

• Returning to the Laplace transform, we note that *any* Bromwich contour in the inverse Laplace transform does the job so long as it belongs to the ROC

- To see this, we recall Cauchy's theorem from complex analysis
- Loosely speaking, this theorem states that if *F*(*s*) is analytic within a region *A* in the complex *s*-plane, then for any closed curve *C* belonging to *A*, we have

$$\oint_{s\in C} F(s) \mathrm{d}s = 0$$

- For a time signal x(t) we know that its Laplace transform X(s) is analytic in its ROC
- The function e^{st} is also analytic in this region (as a function of *s*) lacksquare
- Conclusion: the function $F(s) = X(s)e^{st}$ is analytic in the ROC of the sig- \bullet nal x(t)

• Applying Cauchy's theorem, we have

$$\oint_{s\in C} X(s) e^{st} \mathrm{d}s = 0$$

for any closed curve *C* belong to the ROC of the signal x(t)

- This result can be used to show that integration along any Bromwich contour belonging to the ROC produces the time-domain signal *x*(*t*)
- We illustrate this for a causal time-signal *x*(*t*) (the analysis for anti- or non-causal signals is similar)
- For a causal time signal, the ROC is some right-half plane in general
- We consider two Bromwich contours Br₁ and Br₂ belonging to this region

- Our claim is that it does not matter along which contour you integrate to get *x*(*t*) back
- In other words

$$\int_{s \in \operatorname{Br}_1} X(s) e^{st} ds = \int_{s \in \operatorname{Br}_2} X(s) e^{st} ds$$

with

$$Br_1 = \{s \in \mathbb{C} | s = \sigma_1 + j\Omega, \sigma_1 > \sigma_c, -\infty < \Omega < \infty\}$$

and

$$Br_2 = \{s \in \mathbb{C} | s = \sigma_2 + j\Omega, \sigma_2 > \sigma_c, -\infty < \Omega < \infty\}$$

 $\sigma_2 > \sigma_1$

• To show this, consider the curve

$$C_{\Omega} = L_{\Omega}^{(1)} \cup C_{\text{up}} \cup L_{\Omega}^{(2)} \cup C_{\text{down}}$$

which is completely located within the ROC of signal x(t)

• From Cauchy's theorem it follows that

$$\oint_{s \in C_{\Omega}} X(s) e^{st} \, \mathrm{d}s = 0 \qquad (*)$$

or

$$\int_{s \in L_{\Omega}^{(1)}} X(s) e^{st} ds + \int_{s \in C_{\text{up}}} X(s) e^{st} ds + \int_{s \in L_{\Omega}^{(2)}} X(s) e^{st} ds + \int_{s \in C_{\text{down}}} X(s) e^{st} ds = 0$$

• Clearly,

$$\lim_{\Omega \to \infty} \int_{s \in L_{\Omega}^{(1)}} X(s) e^{st} ds = \int_{s \in Br_1} X(s) e^{st} ds$$

and

$$\lim_{\Omega \to \infty} \int_{s \in L_{\Omega}^{(2)}} X(s) e^{st} ds = -\int_{s \in \operatorname{Br}_2} X(s) e^{st} ds$$

• Furthermore, it can be shown that

$$\lim_{\Omega \to \infty} \int_{s \in C_{\rm up}} X(s) e^{st} \, \mathrm{d}s = 0$$

and

$$\lim_{\Omega \to \infty} \int_{s \in C_{\text{down}}} X(s) e^{st} \, \mathrm{d}s = 0$$

• Taking the limit $\Omega \to \infty$ in Eq. (*) and putting all limits together, we find

$$\int_{s \in \operatorname{Br}_1} X(s) e^{st} ds - \int_{s \in \operatorname{Br}_2} X(s) e^{st} ds = 0$$

which is what we wanted to show

- To determine the inverse Laplace transform of some *s*-domain function *X*(*s*), we continu the integrand of the inverse transform into the complex *s*-plane and use techniques from complex analysis
- Although the approach that we follow can be applied to a wide class of Laplace-domain functions *X*(*s*), we restrict ourselves to cases where *X*(*s*) is a *strictly proper* rational function of the form

$$X(s) = \frac{p_M(s)}{q_N(s)}$$

with $p_M(s)$ is a polynomial in *s* of degree *M* and $q_N(s)$ is a polynomial in *s* of degree *N*

- The rational function X(s) is called *improper* if M > N
- The rational function X(s) is called *proper* if $M \le N$
- The rational function X(s) is called *strictly proper* if M < N

• Furthermore, let *X*(*s*) have

- * *m* poles located to the *left* of the Bromwich contour and
- * *n* poles located to the *right* of the Bromwich contour

• If *x*(*t*) is causal then *n* = 0: there are no poles to the right of the Bromwich contour, since for a causal signal *X*(*s*) is analytic to the right of the Bromwich contour

• If *x*(*t*) is anti-causal then *m* = 0: there are no poles to the left of the Bromwich contour, since for an anti-causal signal *X*(*s*) is analytic to the left of the Bromwich contour

- To evaluate the inversion integral, we distinguish between two cases
- **Case 1:** *t* < 0
- In this case we evaluate the integral by considering the closed curve $C_{\Omega} = L_{\Omega} \cup C_{\Omega}^{r}$ shown below

- The curve C_{Ω} is traversed *clockwise* and encloses all *n* poles of *X*(*s*) located to the right of the Bromwich contour
- We can always achieve this by making Ω sufficiently large
- Applying the residue theorem, we find

$$\oint_{s \in C_{\Omega}} X(s) e^{st} ds = -2\pi j \sum_{p=1}^{n} \operatorname{Res} [X(s) e^{st}, s_p] \qquad (**)$$

where s_p is the *p*th pole located to the right of the Bromwich contour

- Recall that the residue of $X(s)e^{st}$ at a pole of order k at $s = s_p$ is computed as follows:
 - 1. Construct the function $\varphi(s) = (s s_p)^k X(s) e^{st}$
 - 2. The residue of $X(s)e^{st}$ at $s = s_p$ is given by

Res
$$[X(s)e^{st}, s_p] = \frac{\varphi^{(k-1)}(s)}{(k-1)!}\Big|_{s=s_p}$$

• The reason for considering the indicated curve C_{Ω} is that for the Laplacedomain functions X(s) considered here (strictly proper rational functions), it can be shown that

$$\lim_{\Omega \to \infty} \int_{s \in C_{\Omega}^{r}} X(s) e^{st} ds = 0 \quad \text{for } t < 0$$

• Taking the limit $\Omega \to \infty$ in Eq. (**) and realizing that

$$\lim_{\Omega \to \infty} \int_{s \in L_{\Omega}} X(s) e^{st} ds = \int_{s \in Br} X(s) e^{st} ds$$

we find that

$$\int_{s \in Br} X(s) e^{st} ds = -2\pi j \sum_{p=1}^{n} \operatorname{Res} [X(s) e^{st}, s_p] \quad \text{for } t < 0$$

• Consequently,

$$x(t) = -\sum_{p=1}^{n} \operatorname{Res}[X(s)e^{st}, s_p] \quad \text{for } t < 0$$

where the s_p are the distinct poles of X(s) located to the right of the Bromwich contour

• For a causal signal, *X*(*s*) has no poles to the right of the Bromwich contour and the inversion formula gives

$$x(t) = 0 \qquad \text{for } t < 0$$

as it should be, of course

- **Case 2:** t > 0
- In this case we evaluate the integral by considering the closed curve $C_{\Omega} = L_{\Omega} \cup C_{\Omega}^{l}$ shown below

- The curve C_Ω is traversed *counterclockwise* and encloses all *m* poles of X(s) located to the left of the Bromwich contour
- We can always achieve this by making Ω sufficiently large
- Applying the residue theorem, we find

$$\oint_{s \in C_{\Omega}} X(s) e^{st} ds = 2\pi j \sum_{p=1}^{m} \operatorname{Res} \left[X(s) e^{st}, s_p \right] \qquad (***)$$

where s_p is the *p*th pole located to the left of the Bromwich contour

• The reason for considering the indicated curve C_{Ω} is that for the Laplacedomain functions *X*(*s*) consider here (strictly proper rational functions), it can be shown that

$$\lim_{\Omega \to \infty} \int_{s \in C_{\Omega}^{l}} X(s) e^{st} ds = 0 \quad \text{for } t > 0$$

• Taking the limit
$$\Omega \to \infty$$
 in Eq. (* * *) and realizing that

$$\lim_{\Omega \to \infty} \int_{s \in L_{\Omega}} X(s) e^{st} ds = \int_{s \in Br} X(s) e^{st} ds$$
we find that

$$\int_{s \in Br} X(s) e^{st} ds = 2\pi j \sum_{p=1}^{m} \operatorname{Res} [X(s) e^{st}, s_p] \quad \text{for } t > 0$$

• Consequently,

$$x(t) = \sum_{p=1}^{m} \operatorname{Res}[X(s)e^{st}, s_p] \quad \text{for } t > 0$$

where the s_p are the distinct poles of X(s) located to the left of the Bromwich contour

• For an anti-causal signal, *X*(*s*) has no poles to the left of the Bromwich contour and the inversion formula gives

$$x(t) = 0 \qquad \text{for } t > 0$$

as it should be, of course

- **Example 1** Let X(s) = 1/s be the Laplace transform of a time signal x(t) with the half-plane $\operatorname{Re}(s) > 0$ as its ROC
- We already know what the time-function is, of course, but let's compute it using residue calculus
- X(s) has a simple pole at s = 0 and is analytic on its ROC
- The Bromwich contour must be located within the ROC

- Since there are no poles to the right of the Bromwich contour, we find x(t) = 0 for t < 0
- The simple pole at *s* = 0 is located to the left of the Bromwich contour outside the ROC, of course

• Computing its residue, we find

$$\varphi(s) = sX(s)e^{st} = e^{st}$$
 and $\operatorname{Res}\left[\frac{e^{st}}{s}, 0\right] = \frac{\varphi(s)}{0!}\Big|_{s=0} = \frac{1}{1} = 1$

• and the time signal is

$$x(t) = 1$$
 for $t > 0$

• Conclusion: x(t) = u(t)

- What happens at t = 0?
- Using the inversion formula, we find

$$x(0) = \frac{1}{2\pi j} \int_{s \in Br} \frac{1}{s} ds = \lim_{\substack{\Omega_1 \to \infty \\ \Omega_2 \to \infty}} \int_{\sigma - j\Omega_1}^{\sigma + j\Omega_2} \frac{1}{s} ds$$

- By changing the ratio Ω_1/Ω_2 we can give the integral any value that we want
- Setting $\Omega_1/\Omega_2 = 1$ (as is usual), the resulting integral is known as a *Cauchy principal value* integral

• With this choice, we have $x(0) = \frac{1}{2\pi j} \oint_{s \in Br} \frac{1}{s} ds = \frac{1}{2\pi j} \lim_{\Omega \to \infty} \left[\ln |s| + j \arg(s) \right]_{s=\sigma-j\Omega}^{\sigma+j\Omega}$ $= \frac{1}{2\pi j} \cdot 2j \cdot \lim_{\Omega \to \infty} \arctan\left(\frac{\Omega}{\sigma}\right)$ $= \frac{1}{2\pi j} \cdot 2j \cdot \frac{\pi}{2} = \frac{1}{2}$

• For this reason, the Heaviside unit step function is often defined as

$$u(t) = \begin{cases} 0 & \text{for } t < 0\\ \frac{1}{2} & \text{for } t = 0\\ 1 & \text{for } t > 0 \end{cases}$$

- The above result can be generalized to a general discontinuous signals
- We have

$$\frac{x(t+0) + x(t-0)}{2} = \frac{1}{2\pi j} \oint_{s \in Br} X(s) e^{st} ds$$

- **Example 2** Again X(s) = 1/s, but this time the ROC is $\{s \in \mathbb{C} | \text{Re}(s) < 0\}$
- The ROC is now a left-half plane
- The Bromwich contour is located inside the ROC
- There are no poles to the left of the Bromwich contour
- Consequently,

for t > 0x(t) = 0

- The simple pole at *s* = 0 is now located to the right of the Bromwich contour and contributes for *t* < 0
- Using the residue formula for t < 0, we find

```
x(t) = -1 for t < 0
```

Don't forget the minus sign!

• In total: x(t) = -u(-t)

- **Example 3** Suppose $X(s) = 1/s^2$ with Re(s) > 0 as its ROC
- What is the corresponding time signal?
- The Bromwich contour must be located within the ROC
- There are no poles to the right of the Bromwich contour
- Consequently,

$$x(t) = 0 \qquad \text{for } t < 0$$

- For t > 0 we encounter a pole of order 2 at the origin
- We compute its residue
- First, construct $\varphi(s)$:

$$\varphi(s) = s^2 X(s) e^{st} = e^{st}$$

• The residue at s = 0 is given by

Res
$$[X(s)e^{st}, 0] = \frac{\varphi^{(1)}(s)}{1!}\Big|_{s=0}$$

• Computing the derivative gives

$$\varphi^{(1)}(s) = \frac{\mathrm{d}}{\mathrm{d}s}e^{st} = te^{st}$$

• and the residue is found as

Res
$$[X(s)e^{st}, 0] = \frac{te^{st}}{1!}\Big|_{s=0} = t$$

• Substitution in the residue formula for t > 0 gives

$$x(t) = t$$
 for $t > 0$

• Conclusion: x(t) = r(t)

• Example 4 Suppose

$$X(s) = \frac{2}{1 - s^2}$$

with an ROC given by $ROC_x = \{s \in \mathbb{C} | |Re(s)| < 1\}$

- What is the corresponding time signal x(t)?
- As always, the Bromwich contour is located within the ROC

- X(s) has two simple poles: one at s = -1 and one at s = +1
- The pole at *s* = 1 is located to the right of the Bromwich contour and contributes for *t* < 0
- The pole at *s* = -1 is located to the left of the Bromwich contour and contributes for *t* > 0

- To compute the time-domain signal for *t* < 0, we compute the residue at *s* = 1
- First, determine the φ -function

$$\varphi(s) = (s-1)X(s)e^{st} = -2\frac{e^{st}}{s+1}$$

• The residue of $X(s)e^{st}$ at s = 1 now follows as

Res
$$[X(s)e^{st}, 1] = \frac{\varphi(s)}{0!}\Big|_{s=1} = -e^t$$

• Substitution in the residue formula for t < 0 gives $x(t) = e^t$ for t < 0

- To determine the time-domain signal for t > 0, we compute the residue at s = -1
- First, the φ -function

$$\varphi(s) = (s+1)X(s)e^{st} = -2\frac{e^{st}}{s-1}$$

• The residue of $X(s)e^{st}$ at s = -1 is

$$\operatorname{Res}[X(s)e^{st}, -1] = \frac{\varphi(s)}{0!}\Big|_{s=-1} = e^{-t}$$

- Substitution in the residue formula for t > 0 gives $x(t) = e^{-t}$ for t > 0
- Conclusion: $x(t) = e^{-|t|}$

The Inverse Laplace Transform

- To evaluate the inversion formula, we have restricted ourselves to strictly proper rational functions
- However, contour integration techniques can be applied to a much wider class of functions
- For example, suppose that the transfer function of a causal LTI system is given by

 $H(s) = \frac{1}{\sqrt{s}}$ with $\operatorname{ROC}_h = \{s \in \mathbb{C} | \operatorname{Re}(s) > 0\}$

• Using contour integration, it is possible to show that the corresponding impulse response is

$$h(t) = \frac{1}{\sqrt{\pi t}} u(t)$$

- We will not consider such signals in this course (H(s) is not a rational function)
- As an aside: Is this LTI system BIBO stable?

• In our analysis, we have restricted ourselves to strictly proper rational Laplace domain functions

$$H(s) = \frac{p_M(s)}{q_N(s)}$$

- $p_M(s)$ is a polynomial of degree M
- $q_N(s)$ is a polynomial of degree N
- M < N

• To explain why this covers many cases of practical interest, we return to the ordinary differential equation

$$\left(a_N \frac{\mathrm{d}^N}{\mathrm{d}t^N} + a_{N-1} \frac{\mathrm{d}^{N-1}}{\mathrm{d}t^{N-1}} + \dots + a_1 \frac{\mathrm{d}}{\mathrm{d}t} + a_0 \right) y(t) = \\ \left(b_M \frac{\mathrm{d}^M}{\mathrm{d}t^M} + b_{M-1} \frac{\mathrm{d}^{M-1}}{\mathrm{d}t^{M-1}} + \dots + b_1 \frac{\mathrm{d}}{\mathrm{d}t} + b_0 \right) x(t)$$

which holds for $t > 0^-$ and has to be supplemented by a set of initial conditions (see Lecture 2)

- We note that the coefficients a_i and b_j are all real-valued
- For vanishing initial conditions, the solution of the above equation is called the zero-state response
- For vanishing initial conditions, the system that is described by the differential equation is LTI

• Applying a one-sided Laplace transformation to the differential equation and taking the vanishing initial conditions into account, we find

$$\left(a_{N}s^{N}+a_{N-1}s^{N-1}+...+a_{1}s+a_{0}\right)Y(s) = \left(b_{M}s^{M}+b_{M-1}s^{N-1}+...+b_{1}s+b_{0}\right)X(s)$$

• or

 $q_N(s)Y(s) = p_M(s)X(s)$

• with

$$p_M(s) = b_M s^M + b_{M-1} s^{N-1} + \dots + b_1 s + b_0$$

and

$$q_N(s) = a_N s^N + a_{N-1} s^{N-1} + \dots + a_1 s + a_0$$

• The transfer function of the LTI system is

$$H(s) = \frac{Y(s)}{X(s)} = \frac{p_M(s)}{q_N(s)},$$

which is a rational function in *s*

• We repeat

- * For *M* > *N* the transfer function is an *improper* rational function
- * For $M \leq N$ the transfer function is a *proper* rational function
- * For *M* < *N* the transfer function is a *strictly proper* rational function

• Now it can be shown that if *H* is proper or improper then it can always be written as

$$H(s) = R_{M-N}(s) + \frac{S(s)}{T(s)}$$

- $R_{M-N}(s)$ is a polynomial in *s* of degree M N
- *S* and *T* are polynomials such that the rational function S/T is strictly proper

• Example 1

$$H(s) = \frac{s}{s+1}$$

is a proper rational function, which can be written as

$$H(s) = 1 - \frac{1}{s+1}$$

• In this example, $R_0(s) = 1$ and -1/(s+1) is strictly proper

• Example 2

$$H(s) = \frac{s^3}{s+4}$$

is an improper rational function, which can be written as

$$H(s) = s^2 - 4s + 16 - \frac{64}{s+4}$$

• In this example, $R_2(s) = s^2 - 4s + 16$ and -64/(s+4) is strictly proper

- Time-domain signals can now be obtained using residue calculus and by identifying powers of *s* with derivatives in time (constants transform into Dirac distributions)
- Another approach is to expand strictly proper rational functions in partial fractions such that we can use the known transforms of standard signals to retrieve the corresponding time signals
- How to expand depends on the roots of the denominator polynomial
- We illustrate for a denominator polynomial that is quadratic

- Two distinct roots (possibly complex)
- Suppose *H*(*s*) is a strictly proper transfer function

$$H(s) = \frac{N(s)}{(s+p_1)(s+p_2)}, \quad s \in \text{ROC}_h, p_1 \neq p_2$$

• N(s) is a polynomial of degree ≤ 1 with real coefficients

• The partial fraction expansion of *H* is

$$H(s) = \frac{A_1}{s + p_1} + \frac{A_2}{s + p_2}$$

• To find A_1 and A_2 , multiply H(s) by $(s + p_1)(s + p_2)$. This gives

$$N(s) = A_1(s + p_2) + A_2(s + p_1)$$

• Setting $s = -p_1$, we obtain

$$A_1 = \frac{N(-p_1)}{p_2 - p_1}$$

• Setting
$$s = -p_2$$
, we obtain

$$A_2 = \frac{N(-p_2)}{p_1 - p_2}$$

• If p_1 and p_2 are real, the time-domain signal is

$$h(t) = \left(A_1 e^{-p_1 t} + A_2 e^{-p_2 t}\right) u(t)$$

• Example Suppose

$$H(s) = \frac{1}{(s+1)(s+4)} = \frac{A_1}{s+1} + \frac{A_2}{s+4}$$

- Here, N(s) = 1, $p_1 = 1$, and $p_2 = 4$
- We find $A_1 = 1/(4-1) = 1/3$ and $A_2 = 1/(1-4) = -1/3$, and $H(s) = \frac{1}{3} \left(\frac{1}{s+1} - \frac{1}{s+4} \right)$

• The impulse response is

$$h(t) = \frac{1}{3} \left(e^{-t} - e^{-4t} \right) u(t)$$

- If *p*₁ and *p*₂ are complex, then they have to be the complex conjugate of each other, since the coefficients of the denominator polynomial are real-valued
- We write

$$p_1 = a - j\Omega_0 = p_2^*$$
 $a, \Omega_0 \in \mathbb{R},$

where the asterisk denotes complex conjugation

• Recall that the coefficients of the nominator polynomial *N*(*s*) are also real-valued

• Consequently,
$$N^*(s) = N(s^*)$$
 and
 $A_2^* = \frac{N^*(-p_2)}{p_1^* - p_2^*} = \frac{N(-p_2^*)}{p_2 - p_1} = \frac{N(-p_1)}{p_2 - p_1} = A_1$
• With $A_1 = A = A_2^*$, our partial fraction expansion becomes
 $\frac{N(s)}{(s+a)^2 + \Omega_0^2} = \frac{N(s)}{(s+a-j\Omega_0)(s+a+j\Omega_0)} = \frac{A}{s+a-j\Omega_0} + \frac{A^*}{s+a+j\Omega_0}$

• The corresponding time signal is

$$h(t) = Ae^{-at}e^{j\Omega_0 t}u(t) + A^*e^{-at}e^{-j\Omega_0 t}u(t) = 2e^{-at}\operatorname{Re}(Ae^{j\Omega_0 t})u(t)$$

• Cartesian decomposition of the complex number *A*:

$$A = A_r + jA_i$$
, $A_r = \operatorname{Re}(A)$, $A_i = \operatorname{Im}(A)$

• The time signal is

$$h(t) = 2e^{-at} \left[A_{\rm r} \cos(\Omega_0 t) - A_{\rm i} \sin(\Omega_0 t) \right] u(t)$$

• Polar decomposition of the complex number *A*:

 $A = |A|e^{\mathbf{j}\theta}$

• The time signal is

$$h(t) = 2|A| e^{-at} \cos(\Omega_0 t + \theta) u(t)$$

• Both expression describe the same signal, of course

• Coinciding real roots

• Suppose that the Laplace domain function is of the form

$$H(s) = \frac{N(s)}{(s+\alpha)^2}$$

• In this case, *H* has a double real root at $s = -\alpha$

• Its partial fraction expansion is

$$H(s) = \frac{N(s)}{(s+\alpha)^2} = \frac{a}{(s+\alpha)^2} + \frac{b}{s+\alpha}$$

• To find *a* and *b*, we multiply by $(s + \alpha)^2$

• We obtain

$$N(s) = a + b(s + \alpha)$$

• Setting $s = -\alpha$, we find $a = N(-\alpha)$

• Substitution now gives

$$N(s) - N(-\alpha) = b(s + \alpha)$$

• Selecting a value for $s \neq -\alpha$ gives *b*

• For example, if $\alpha \neq 0$ we can take s = 0 and b follows as

$$b = \frac{N(0) - N(-\alpha)}{\alpha}$$

• The corresponding time signal is

$$h(t) = (a t e^{-\alpha t} + b e^{-\alpha t})u(t)$$

• **Example** Let

$$H(s) = \frac{4}{s(s+2)^2}$$

• Its partial fraction expansion is

$$H(s) = \frac{4}{s(s+2)^2} = \frac{A}{s} + \frac{B}{(s+2)^2} + \frac{C}{s+2}$$

- Multiplication by $s(s+2)^2$ gives $4 = (A+C)s^2 + (4A+B+2C)s + 4A$
- Equating equal powers of *s* gives

A + C = 04A + B + 2C = 04A = 4

from which it follows that A = 1, B = -2, and C = -1

- We are given a causal LTI system with a rational transfer function H(s) and ROC_x as its region of convergence
- Also given is that the Fourier transform $H(\Omega)$ exists
- The system is then BIBO stable
- The existence of the Fourier transform implies BIBO stability for such a \bullet system

- Let's analyze
- The ROC of a causal system is some right-half plane

- The j Ω -axis belongs to the ROC, since $H(\Omega)$ exists
- This implies that all poles of H(s) are located in the left-half of the complex s-plane
- The time signals that correspond to these poles are all exponentially decaying as time increases
- Consequently, h(t) is absolutely integrable and the system is BIBO stable

- Let *y*(*t*) be the output signal of a causal LTI system due to a causal input signal
- The output signal is made up of a transient response and a steady-state response
- Transient response: signal due to the inertia of the system
- Steady-state response: signal that remains if you wait for a "sufficiently long" time (after all transients have essentially vanished)
- By studying the poles of the Laplace transform of y(t), we can conclude whether or not such a steady-state response exists

- Observations (use a Laplace transform table, if necessary):
 - 1. A pole in the right-half of the complex *s*-plane corresponds to a time signal that grows exponentially in time (irrespective of the order of the pole)
 - 2. A pole in the left-half of the complex *s*-plane corresponds to a time signal that exponentially decays to zero (irrespective of the order of the pole)
 - 3. A pole on the imaginary axis with an order larger than one corresponds to a time signal that shows polynomial growth in time
 - 4. A simple pole on the imaginary axis corresponds to a signal that remains bounded in time

- Given these observations, we conclude that a steady-state response exists if
- *Y*(*s*) has no poles in the right-half of the complex *s*-plane and no poles with an order larger than one on the imaginary axis
- If all poles of Y(s) are in the left-half of the complex *s*-plane then the steady-state response vanishes

Rigoreous proofs of the many properties of the Laplace transform (Abel's theorem, for example), the existence of the abscissa of convergence, etc. can be found in

P. Henrici, *Applied and Computational Analysis*, Vol. 2, Wiley Classics Library, New York, 1991

J. E. Marsden and M. J. Hoffman, *Basic Complex Analysis*, 2nd Ed., W. H. Freeman and Company, New York, 1987

W. R. LePage, *Complex Variables and the Laplace Transform for Engineers*, Dover Inc., New York, 1980.