Signals and Systems

3. The Laplace Transform Part 1

The Laplace Transform

- Contents

The two-sided Laplace transform
Properties of the two-sided Laplace transform
The one-sided Laplace trasnform
Properties of the one-sided Laplace transform
Circuit theory revisited
Book:
Sections 3.1, 3.2, 3.3, 3.4

■ Exercises:
3.1, 3.3, 3.4, 3.6, 3.7, 3.8, 3.13, 3.15, 3.17, 3.20, 3.21 (3rd Ed.)
3.2, 3.4, 3.5, 3.9, 3.10, 3.13, 3.20, 3.22, 3.25, 3.29, 3.30 (2nd Ed.)

The Laplace Transform

- Given an LTI system with a single input and a single output
- Input signal: $x(t)$
- Output signal: $y(t)$
- We have seen that the output signal is given by the convolution of the input signal $x(t)$ and the impulse response $h(t)$:

$$
y(t)=\int_{\tau=-\infty}^{\infty} x(\tau) h(t-\tau) \mathrm{d} \tau=\int_{\tau=-\infty}^{\infty} x(t-\tau) h(\tau) \mathrm{d} \tau
$$

The Laplace Transform

- Let the input signal be given by

$$
x(t)=e^{s t} \quad \text { with } \quad s \in \mathbb{C}
$$

- The corresponding output signal is

$$
y(t)=\int_{\tau=-\infty}^{\infty} e^{s(t-\tau)} h(\tau) \mathrm{d} \tau=\int_{\tau=-\infty}^{\infty} h(\tau) e^{-s \tau} \mathrm{~d} \tau e^{s t}=H(s) x(t)
$$

with

$$
H(s)=\int_{\tau=-\infty}^{\infty} h(\tau) e^{-s \tau} \mathrm{~d} \tau
$$

The Laplace Transform

- We observe that the output signal is a multiple of the input signal (provided the integral converges, of course): $y(t)=H(s) e^{s t}$

$$
\underbrace{S}_{A}\{\underbrace{e^{s t}}_{u}\}=\underbrace{H(s)}_{\lambda} \underbrace{e^{s t}}_{u}
$$

Compare this with a standard eigenvalue problem in linear algebra:

$$
A u=\lambda u
$$

- $H(s)$ is an eigenvalue of the LTI system corresponding to the eigenfunction $x(t)=e^{s t}$

The Laplace Transform

- The expression for $H(s)$ is precisely the definition of the two-sided Laplace transform of $h(t)$
- Two-sided Laplace transform of a signal $x(t)$:

$$
X(s)=\int_{t=-\infty}^{\infty} x(t) e^{-s t} \mathrm{~d} t
$$

defined, of course, for those $s \in \mathbb{C}$ for which the integral converges

The Laplace Transform

- To investigate under what condition(s) convergence takes place, we consider
* the Laplace transform of causal signals: $x(t)=0$ for $t<0$
* the Laplace transform of anti-causal signals: $x(t)=0$ for $t>0$
* the Laplace transform of noncausal signals
- The Laplace Transform
- A causal signal $x(t)$ is said to be of exponential order if there exists constants A and α such that

$$
|x(t)| \leq A e^{\alpha t} \quad \text { for } t \geq 0
$$

- It can be shown that for causal signals of exponential order there exists a unique number $-\infty \leq \sigma_{\mathrm{c}}<\infty$ such that the Laplace integral converges for $\operatorname{Re}(s)>\sigma_{\mathrm{c}}$
- The number σ_{c} is called the abscissa of convergence

The Laplace Transform

- The set $\left\{s \in \mathbb{C} ; \operatorname{Re}(s)>\sigma_{\mathrm{c}}\right\}$ is called the Region of Convergence (ROC)
- To avoid confusion, we sometimes write ROC_{x} to indicate the ROC of the Laplace transform of a signal $x(t)$
- Note that the ROC of a causal signal (of exponential order) is a right-half plane (unless $\sigma_{\mathrm{c}}=-\infty$, of course)
- It can also be shown that $X(s)$ is analytic on its ROC

The Laplace Transform

- Example 1: The two-sided Laplace transform of the Heaviside unit step function $u(t)$

$$
U(s)=\int_{t=-\infty}^{\infty} u(t) e^{-s t} \mathrm{~d} t=\int_{t=0}^{\infty} e^{-s t} \mathrm{~d} t=\frac{1}{s} \quad \text { for } \operatorname{Re}(s)>0
$$

- In this case $\operatorname{ROC}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>0\}$
- Example 2: The two-sided Laplace transform of a scaled rectangular pulse function $x(t)=p\left(\frac{t}{T}\right), T>0$

$$
X(s)=\int_{t=-\infty}^{\infty} x(t) e^{-s t} \mathrm{~d} t=\int_{t=0}^{T} e^{-s t} \mathrm{~d} t=\frac{1}{s}\left(1-e^{-s T}\right), \quad s \in \mathbb{C}
$$

- Note that there is no pole at $s=0$
- In this case $\mathrm{ROC}=\mathbb{C}$

The Laplace Transform

- An anti-causal signal $x(t)$ is said to be of exponential order if there exists constants B and β such that

$$
|x(t)| \leq B e^{\beta t} \quad \text { for } t \leq 0
$$

- For anti-causal signals of exponential order it can be shown that there exists a number $-\infty<\sigma_{\mathrm{ac}} \leq \infty$ such that the Laplace integral converges for $\operatorname{Re}(s)<\sigma_{\text {ac }}$
- The number σ_{ac} is again called the abscissa of convergence and the ROC is a left-half plane (unless $\sigma_{\mathrm{ac}}=\infty$)
- The Laplace transform is analytic on the ROC

The Laplace Transform

The Laplace Transform

- Example. The two-sided Laplace transform of $x(t)=u(-t)$

$$
X(s)=\int_{t=-\infty}^{\infty} x(t) e^{-s t} \mathrm{~d} t=\int_{t=-\infty}^{0} e^{-s t} \mathrm{~d} t=-\frac{1}{s} \quad \text { for } \operatorname{Re}(s)<0
$$

- For this signal the $\mathrm{ROC}=\{s \in \mathbb{C} ; \operatorname{Re}(s)<0\}$

The Laplace Transform

- Specifying the ROC is important!
- For example, $X(s)=1 / s$ can be
* the Laplace transform of the causal signal $x(t)=u(t)$, or
* the Laplace transform of the anti-causal signal $x(t)=-u(-t)$
- Which one is intended becomes clear by specifying the ROC

The Laplace Transform

- Finally, what about noncausal signals?
- For such a signal we write

$$
x(t)=x(t) \cdot 1=x(t)[u(t)+u(-t)]=x_{\mathrm{c}}(t)+x_{\mathrm{ac}}(t)
$$

with

$$
x_{\mathrm{c}}(t)=x(t) u(t) \quad \text { and } \quad x_{\mathrm{ac}}(t)=x(t) u(-t)
$$

- The Laplace transform of $x_{\mathrm{c}}(t)$ is $X_{\mathrm{c}}(s)$ with a region of convergence given by ROC $_{x_{c}}$
- The Laplace transform of $x_{\mathrm{ac}}(t)$ is $X_{\mathrm{ac}}(s)$ with a region of convergence given by $\operatorname{ROC}_{x_{\mathrm{ac}}}$
- The Laplace transform of the noncausal signal $x(t)$ is given by $X(s)=X_{\mathrm{C}}(s)+$ $X_{\mathrm{ac}}(s)$ with a region of convergence given by $\operatorname{ROC}_{x}=\operatorname{ROC}_{x_{\mathrm{c}}} \cap \operatorname{ROC}_{x_{\mathrm{ac}}}$
- The two-sided Laplace transform of $x(t)$ does not exist if $\mathrm{ROC}_{x}=\varnothing$
- If the two-sided Laplace transform exists then in general its ROC is a strip in the complex s-plane

The Laplace Transform

- Example 1: The two-sided Laplace transform of the noncausal signal $x(t)=$ $e^{-|t|}$ is

$$
X(s)=-\frac{2}{s^{2}-1} \quad \text { with } \quad-1<\operatorname{Re}(s)<1
$$

- Example 2: The two-sided Laplace transform of the noncausal signal $x(t)=$ $e^{a t}$ with $a \in \mathbb{C}$ does not exist

The Laplace Transform

- The two-sided Laplace transform of the Dirac distribution is

$$
\int_{t=-\infty}^{\infty} \delta(t) e^{-s t} \mathrm{~d} t=1, \quad s \in \mathbb{C}
$$

- The two-sided Laplace transform of the derivative of the Dirac distribution is

$$
\int_{t=-\infty}^{\infty} \delta^{\prime}(t) e^{-s t} \mathrm{~d} t
$$

- Recall that

$$
f(t) \delta^{\prime}(t)=-f^{\prime}(0) \delta(t)+f(0) \delta^{\prime}(t)
$$

The Laplace Transform

- Using the above equation with $f(t)=e^{-s t}$ gives

$$
e^{-s t} \delta^{\prime}(t)=s \delta(t)+\delta^{\prime}(t)
$$

- and substitution results in

$$
\int_{t=-\infty}^{\infty} \delta^{\prime}(t) e^{-s t} \mathrm{~d} t=s, \quad s \in \mathbb{C}
$$

since

$$
\int_{t=-\infty}^{\infty} \delta(t) \mathrm{d} t=1 \quad \text { and } \quad \int_{t=-\infty}^{\infty} \delta^{\prime}(t) \mathrm{d} t=0
$$

Two-Sided Laplace Transforms

Time signal	Two-sided Laplace transform	$\mathbf{R O C}$	parameters
$e^{a t} u(t)$	$\frac{1}{s-a}$	$\operatorname{Re}(s)>\operatorname{Re}(a)$	$a \in \mathbb{C}$
$-e^{a t} u(-t)$	$\frac{1}{s-a}$	$\operatorname{Re}(s)<\operatorname{Re}(a)$	$a \in \mathbb{C}$
$\frac{t^{k-1} e^{a t}}{(k-1)!} u(t)$	$\frac{1}{(s-a)^{k}}$	$\operatorname{Re}(s)>\operatorname{Re}(a)$	$a \in \mathbb{C}, k \in \mathbb{N}$
$-\frac{t^{k-1} e^{a t}}{(k-1)!} u(-t)$	$\frac{1}{(s-a)^{k}}$	$\operatorname{Re}(s)<\operatorname{Re}(a)$	$a \in \mathbb{C}, k \in \mathbb{N}$
$e^{a t} \cos \left(\Omega_{0} t\right) u(t)$	$\frac{s-a}{(s-a)^{2}+\Omega_{0}^{2}}$	$\operatorname{Re}(s)>a$	$a, \Omega_{0} \in \mathbb{R}$
$e^{a t} \sin \left(\Omega_{0} t\right) u(t)$	$\operatorname{Re}(s)>a$	$a, \Omega_{0} \in \mathbb{R}$	
$\delta(t)$	Ω_{0}		
$\delta^{\prime}(t)$	$\mathbb{C}+\Omega_{0}^{2}$	\mathbb{C}	-

The Laplace Transform

- Note that the Laplace transforms of the signals in the above table are ra tional functions

$$
X(s)=\frac{\text { some polynomials in } s}{\text { some other polynomial in } s}
$$

The Laplace Transform

- Convolution Let $y(t)=x(t) * h(t)$
- $X(s)$ is the two-sided Laplace transform of $x(t)$ with a region of convergence ROC_{x}
- $H(s)$ is the two-sided Laplace transform of $h(t)$ with a region of convergence ROC_{h}
- The Laplace transform of $y(t)$ is

$$
Y(s)=X(s) H(s) \quad \text { with } \operatorname{ROC}_{y}=\operatorname{ROC}_{x} \cap \mathrm{ROC}_{h}
$$

- A convolution product in the time-domain is transformed into an ordinary product in the s-domain!
- Let's verify this statement
- We start with the definition of the two-sided Laplace transform

$$
Y(s)=\int_{t=-\infty}^{\infty} y(t) e^{-s t} \mathrm{~d} t
$$

- Substitution of the convolution integral gives

$$
Y(s)=\int_{t=-\infty}^{\infty} \int_{\tau=-\infty}^{\infty} x(\tau) h(t-\tau) \mathrm{d} \tau e^{-s t} \mathrm{~d} t
$$

- Interchanging the order of integration, we get

$$
\begin{aligned}
& Y(s)=\int_{\tau=-\infty}^{\infty} x(\tau) \int_{t=-\infty}^{\infty} h(t-\tau) e^{-s t} \mathrm{~d} t \mathrm{~d} \tau \\
& \stackrel{p=t-\tau}{=} \int_{\tau=-\infty}^{\infty} x(\tau) \int_{p=-\infty}^{\infty} h(p) e^{-s(p+\tau)} \mathrm{d} p \mathrm{~d} \tau \\
&=\int_{\tau=-\infty}^{\infty} x(\tau) e^{-s \tau} \mathrm{~d} \tau \int_{p=-\infty}^{\infty} h(p) e^{-s p} \mathrm{~d} p \\
&=X(s) H(s)
\end{aligned}
$$

with $s \in \mathrm{ROC}_{x} \cap \mathrm{ROC}_{h}$

- The Laplace Transform
- Given an LTI system with input signal $x(t)$ and output signal $y(t)$
- Let $h(t)$ denote the impulse response of this system
- Output signal:

$$
y(t)=\int_{\tau=-\infty}^{\infty} h(\tau) x(t-\tau) \mathrm{d} \tau
$$

- In the Laplace- or s-domain:

$$
Y(s)=H(s) X(s) \quad \text { with } s \in \mathrm{ROC}_{x} \cap \mathrm{ROC}_{h}
$$

- $H(s)$ is called the transfer function of the system

The Laplace Transform

- Example Let $x(t)=u(t)$ and $h(t)=e^{-t} u(t)$. We are interested in the convolution product $y(t)=x(t) * h(t)$
- Computing this product directly, we find

$$
y(t)= \begin{cases}0 & \text { for } t<0 \\ \int_{\tau=0}^{t} h(t-\tau) \mathrm{d} \tau=1-e^{-t} & \text { for } t>0\end{cases}
$$

- The two-sided Laplace transform of $x(t)$ is given by

$$
X(s)=\frac{1}{s}, \quad \operatorname{Re}(s)>0
$$

The Laplace Transform

- The two-sided Laplace transform of $h(t)$ is given by

$$
H(s)=\frac{1}{s+1}, \quad \operatorname{Re}(s)>-1
$$

- The two-sided Laplace transform of $y(t)$ is given by

$$
Y(s)=X(s) H(s)=\frac{1}{s(s+1)}, \quad \operatorname{Re}(s)>0
$$

The Laplace Transform

- What time signal corresponds this Laplace domain function?
- Observe that

$$
Y(s)=\frac{1}{s}-\frac{1}{s+1}, \quad \operatorname{Re}(s)>0
$$

- Using the table, we find $y(t)=\left(1-e^{-t}\right) u(t)$ or

$$
y(t)= \begin{cases}0 & \text { for } t<0 \\ 1-e^{-t} & \text { for } t>0\end{cases}
$$

- Much more on the inverse Laplace transform in the next lecture

The Laplace Transform

- Differentiation in the Laplace-domain
- Let $X(s)$ be the two-sided Laplace transform of a signal $x(t)$ with a region of convergence given by ROC_{x}
- We have stated that $X(s)$ is analytic on ROC_{x}
- The Laplace transform can therefore be differentiated
- We have

$$
\frac{\mathrm{d} X(s)}{\mathrm{d} s}=\frac{\mathrm{d}}{\mathrm{~d} s} \int_{t=-\infty}^{\infty} x(t) e^{-s t} \mathrm{~d} t, \quad s \in \mathrm{ROC}_{x}
$$

The Laplace Transform

- Interchanging the order of differentiation and integration, we find

$$
\frac{\mathrm{d} X(s)}{\mathrm{d} s}=\int_{t=-\infty}^{\infty}[-t x(t)] e^{-s t} \mathrm{~d} t, \quad s \in \mathrm{ROC}_{x}
$$

- The expression on the right is the Laplace transform of $-t x(t)$
- We conclude that

$$
-t x(t) \text { transforms into } \frac{\mathrm{d} X(s)}{\mathrm{d} s} \quad s \in \mathrm{ROC}_{x}
$$

- Differentiation in the Laplace-domain corresponds to multiplication by $-t$ in the time-domain

The Laplace Transform

- Differentiation in the time-domain
- Suppose we are given a time-domain signal $x(t)$ with a two-sided Laplace transform $X(s), s \in \mathrm{ROC}_{x}$
- What is the Laplace transform of

$$
y(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t} ?
$$

- By definition, we have

$$
\begin{aligned}
Y(s) & =\int_{t=-\infty}^{\infty} \frac{\mathrm{d} x(t)}{\mathrm{d} t} e^{-s t} \mathrm{~d} t \\
& =\left.\lim _{T \rightarrow \infty} x(t) e^{-s t}\right|_{t=-T} ^{T}-\int_{t=-\infty}^{\infty} x(t)\left(-s e^{-s t}\right) \mathrm{d} t \\
& =s \int_{t=-\infty}^{\infty} x(t) e^{-s t} \mathrm{~d} t \\
& =s X(s), \quad \text { with } s \in \operatorname{ROC}_{x}
\end{aligned}
$$

The Laplace Transform

- The first term on the right-hand side on the second line (blue formula) vanishes because we assumed that $X(s)$ exists
- We have found that

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t} \quad \text { transforms into } s X(s) \quad s \in \mathrm{ROC}_{x}
$$

The Laplace Transform

- Differentiation in the time-domain transforms into multiplication by s in the Laplace domain!
- Integration in the time-domain
- Suppose that we are again given a time-domain signal $x(t)$ with a twosided Laplace transform $X(s), s \in \mathrm{ROC}_{x}$
- What is the Laplace transform of

$$
y(t)=\int_{\tau=-\infty}^{t} x(\tau) \mathrm{d} \tau ?
$$

- The Laplace Transform

- Observe that y is the convolution of x and the Heaviside unit step function u :

$$
y(t)=\int_{\tau=-\infty}^{\infty} x(\tau) u(t-\tau) \mathrm{d} \tau
$$

- Using the convolution property, we find

$$
Y(s)=X(s) \cdot \frac{1}{s}, \quad s \in \operatorname{ROC}_{x} \cap \mathrm{ROC}_{u}
$$

- If $\mathrm{ROC}_{x} \cap \mathrm{ROC}_{u}=\varnothing$ then the Laplace transform of $y(t)$ does not exist

The Laplace Transform

- Since $\operatorname{ROC}_{u}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>0\}$, we can also write

$$
Y(s)=\frac{1}{s} X(s), \quad s \in\left\{\operatorname{ROC}_{x} \mid \operatorname{Re}(s)>0\right\}
$$

- We have found that

$$
\int_{\tau=-\infty}^{t} x(\tau) \mathrm{d} \tau \quad \text { transforms into } \frac{1}{s} X(s) \quad s \in\left\{\operatorname{ROC}_{x} \mid \operatorname{Re}(s)>0\right\}
$$

- Integration in the time-domain transforms in to division by s in the Laplace domain!
- Shift in the time-domain
- Again we have a signal $x(t)$ with a two-sided Laplace transform $X(s), s \in$ ROC_{x}
- Let $y(t)$ be a shifted version of $x(t)$ with time $\operatorname{shift} \tau \in \mathbb{R}$:

$$
y(t)=x(t+\tau), \quad \tau \in \mathbb{R}
$$

The Laplace Transform

- What is the Laplace transform of $y(t)$?
- We compute

$$
\begin{aligned}
Y(s) & =\int_{t=-\infty}^{\infty} x(t+\tau) e^{-s t} \mathrm{~d} t \\
& \stackrel{p=t+\tau}{=} \int_{p=-\infty}^{\infty} x(p) e^{-s(p-\tau)} \mathrm{d} p \\
& =e^{s \tau} \int_{p=-\infty}^{\infty} x(p) e^{-s p} \mathrm{~d} p \\
& =e^{s \tau} X(s), \quad s \in \operatorname{ROC}_{x}
\end{aligned}
$$

- We have found that

$$
x(t+\tau) \text { transforms into } e^{s \tau} X(s), \quad s \in \mathrm{ROC}_{x}
$$

The Laplace Transform

- Example. Suppose the two-sided Laplace transform of a signal $h(t)$ is given by

$$
H(s)=\frac{1}{1-e^{-s T}} \quad \text { with } T>0 \quad \text { and } \quad \operatorname{ROC}_{h}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>0\}
$$

- What is $h(t)$?
- Set $z=e^{-s T}$. We then have

$$
\frac{1}{1-e^{-s T}}=\frac{1}{1-z}
$$

The Laplace Transform

- Now recall the power series

$$
\frac{1}{1-z}=1+z+z^{2}+\ldots \quad \text { for }|z|<1 \text { and } z \in \mathbb{C}
$$

The Laplace Transform

- In our case, we have with $s=\sigma+\mathrm{j} \Omega$:

$$
|z|=\left|e^{-s T}\right|=\left|e^{-\sigma T-\mathrm{j} \Omega T}\right|=\left|e^{-\sigma T}\right| \cdot\left|e^{-j \Omega T}\right|=e^{-\sigma T}, \quad \text { since }\left|e^{-j \Omega T}\right|=1
$$

- We also have $\operatorname{Re}(s)=\sigma>0$ and $T>0$. Consequently,

$$
|z|=e^{-\sigma T}<1
$$

and

$$
\frac{1}{1-e^{-s T}}=1+e^{-s T}+e^{-2 s T}+\ldots
$$

- The Laplace Transform
- Using the Laplace transform of the Dirac distribution and the shifting property, we find

$$
h(t)=\delta(t)+\delta(t-T)+\delta(t-2 T)+\ldots
$$

- Suppose $x(t)$ is a causal signal with support $\left(0, T_{x}\right)$
- For example, $x(t)=\Lambda(t)$, support $(0,2)$
- The Laplace transform of $x(t)$ is $X(s), s \in \mathbb{C}$

The Laplace Transform

- Given now an LTI system with a transfer function

$$
H(s)=\frac{1}{1-e^{-s T}} \quad \text { with } T>T_{x} \text { and } \operatorname{Re}(s)>0
$$

- The Laplace transform of the output signal is

$$
Y(s)=\frac{X(s)}{1-e^{-s T}}, \quad \operatorname{Re}(s)>0
$$

The Laplace Transform

- The corresponding output signal is given by the convolution integral

$$
y(t)=\int_{\tau=-\infty}^{\infty} h(\tau) x(t-\tau) \mathrm{d} \tau
$$

with

$$
h(t)=\delta(t)+\delta(t-T)+\delta(t-2 T)+\ldots=\sum_{k=0}^{\infty} \delta(t-k T)
$$

- Substitution gives

$$
\begin{aligned}
y(t) & =\int_{\tau=-\infty}^{\infty} h(\tau) x(t-\tau) \mathrm{d} \tau=\int_{\tau=-\infty}^{\infty} \sum_{k=0}^{\infty} \delta(\tau-k T) x(t-\tau) \mathrm{d} \tau \\
& =\sum_{k=0}^{\infty} \int_{\tau=-\infty}^{\infty} \delta(\tau-k T) x(t-\tau) \mathrm{d} \tau=\sum_{k=0}^{\infty} x(t-k T) \\
& =x(t)+x(t-T)+x(t-2 T)+\ldots
\end{aligned}
$$

- We have constructed a periodic extension of $x(t)$ for $t>0$

The Laplace Transform

- Shift in the Laplace domain
- Let $X(s)$ be the two-sided Laplace transform of $x(t)$ with $s \in \mathrm{ROC}_{x}$
- Is there a time-domain signal that corresponds to $X(s-a)$ with $s-a \in$ ROC_{x} ?
- We use the definition of the Laplace transform

$$
X(s-a)=\int_{t=-\infty}^{\infty} x(t) e^{-(s-a) t} \mathrm{~d} t=\int_{t=-\infty}^{\infty} e^{a t} x(t) e^{-s t} \mathrm{~d} t
$$

- The answer is yes

$$
e^{a t} x(t) \text { transforms into } X(s-a), \quad s-a \in \mathrm{ROC}_{x}
$$

- Scaling

- Let $x(t)$ have a two-sided Laplace transform $X(s)$ with $s \in \mathrm{ROC}_{x}$
- Given a nonzero real number a, what is the Laplace transform of

$$
y(t)=x(a t) ?
$$

- We use the definition of the Laplace transform

The Laplace Transform

- For $a>0$, we find

$$
\begin{aligned}
Y(s) & =\int_{t=-\infty}^{\infty} y(t) e^{-s t} \mathrm{~d} t=\int_{t=-\infty}^{\infty} x(a t) e^{-s t} \mathrm{~d} t \\
& \stackrel{\tau=a t}{=} \frac{1}{a} \int_{\tau=-\infty}^{\infty} x(\tau) e^{-(s / a) \tau} \mathrm{d} \tau \\
& =\frac{1}{a} X\left(\frac{s}{a}\right), \quad s / a \in \mathrm{ROC}_{x}
\end{aligned}
$$

The Laplace Transform

- Similarly, for $a<0$ we obtain

$$
Y(s)=-\frac{1}{a} X\left(\frac{s}{a}\right) \quad s / a \in \mathrm{ROC}_{x}
$$

- Combining both results, we have

$$
x(a t) \text { transforms into } \frac{1}{|a|} X\left(\frac{s}{a}\right) \quad \text { for } a \in \mathbb{R} \backslash\{0\} \quad \text { and with } \quad \frac{s}{a} \in \operatorname{ROC}_{x}
$$

The Laplace Transform

- Example
- Switch on. We have seen that the two-sided Laplace transform of the Heaviside unit step function $u(t)$ is given by

$$
U(s)=\frac{1}{s} \quad \text { with } \quad s \in \operatorname{ROC}_{u}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>0\}
$$

- Switch off. We have also seen that the two-sided Laplace transform of the anti-causal switch-off signal $f(t)=u(-t)$ is

$$
F(s)=-\frac{1}{s} \quad \text { with } \quad s \in \operatorname{ROC}_{f}=\{s \in \mathbb{C} ; \operatorname{Re}(s)<0\}
$$

- Clearly,

$$
F(s)=U(-s) \quad \text { with } s \in \mathrm{ROC}_{f} \text { or }-s \in \mathrm{ROC}_{u}
$$

The Laplace Transform

Properties of the Two-Sided Laplace Transform

Property	Time signal	Two-sided Laplace transform	ROC	Parameters
Convolution	$y(t)=h(t) * x(t)$	$Y(s)=H(s) X(s)$	$\mathrm{ROC}_{h} \cap \mathrm{ROC}_{x}$	-
Diff. s-domain	$-t x(t)$	$\frac{\mathrm{d} X(s)}{\mathrm{d} s}$	ROC_{x}	-
Diff. t-domain	$\frac{\mathrm{d} x(t)}{\mathrm{d} t}$	$s X(s)$	ROC_{x}	-
Int. t-domain	$\int_{\tau=-\infty}^{t} x(\tau) \mathrm{d} \tau$	$\frac{1}{s} X(s)$	$\left\{\operatorname{ROC}_{x} \mid \operatorname{Re}(s)>0\right\}$	-
Shift t-domain	$x(t+\tau)$	$e^{s \tau} X(s)$	ROC_{x}	$\tau \in \mathbb{R}$
Shift s-domain	$e^{a t} x(t)$	$X(s-a)$	$s-a \in \operatorname{ROC}_{x}$	$a \in \mathbb{C}$
Scaling	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{s}{a}\right)$	$s / a \in \operatorname{ROC}_{x}$	$a \in \mathbb{R} \backslash\{0\}$

- The One-Sided Laplace Transform
- Let $x(t)$ denote a causal signal: $x(t)=x(t) u(t)$
- The two-sided Laplace transform simplifies to

$$
X(s)=\int_{t=0}^{\infty} x(t) e^{-s t} \mathrm{~d} t \quad s \in \mathrm{ROC}_{x}
$$

- This transform is known as the one-sided Laplace transform

The Laplace Transform

- A separate study is warranted, since many (most/all) signals and systems encountered in practice/Nature are causal
- Switch-on phenomena (initial-value problems) are conveniently studied using the one-sided Laplace transform
- To incorporate the Dirac distribution $\delta(t)$, we define the one-sided Laplace transform of a signal $x(t)$ as

$$
X(s)=\int_{t=0^{-}}^{\infty} x(t) e^{-s t} \mathrm{~d} t=\lim _{\epsilon \downarrow 0} \int_{t=-\epsilon}^{\infty} x(t) e^{-s t} \mathrm{~d} t, \quad s \in \mathrm{ROC}_{x}
$$

The Laplace Transform

- Many properties of the two-sided Laplace transform carry over to the onesided Laplace transform
- We only discuss three properties of the one-sided transform that do not have a two-sided counterpart

The Laplace Transform

- Differentiation in the time-domain
- Let $X(s)$ denote the one-sided Laplace transform of the time-domain signal $x(t)$
- What is the one-sided Laplace transform of

$$
y(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t} ?
$$

- By definition

$$
Y(s)=\int_{t=0^{-}}^{\infty} \frac{\mathrm{d} x(t)}{\mathrm{d} t} e^{-s t} \mathrm{~d} t, \quad s \in \operatorname{ROC}_{x}
$$

- Integration by parts gives

$$
Y(s)=\left.\lim _{T \rightarrow \infty, \epsilon \downarrow 0} x(t) e^{-s t}\right|_{-\epsilon} ^{T}-\int_{t=0^{-}}^{\infty} x(t)\left[-s e^{-s t}\right] \mathrm{d} t=-x\left(0^{-}\right)+s X(s)
$$

with $x\left(0^{-}\right)=\lim _{\epsilon \downarrow 0} x(-\epsilon)$ and $s \in \mathrm{ROC}_{x}$

The Laplace Transform

- We have found that

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t} \text { transforms into } s X(s)-x\left(0^{-}\right) \quad s \in \mathrm{ROC}_{x}
$$

The Laplace Transform

- Similarly, by repeated integration by parts we find that

$$
\frac{\mathrm{d}^{2} x(t)}{\mathrm{d} t^{2}} \text { transforms into } s^{2} X(s)-s x\left(0^{-}\right)-\left.\frac{\mathrm{d} x(t)}{\mathrm{d} t}\right|_{t=0^{-}} \quad s \in \mathrm{ROC}_{x}
$$

The Laplace Transform

- Abel's initial-value theorem
- Let $X(s)$ be the one-sided Laplace transform of $x(t), s \in \mathrm{ROC}_{x}$
- Abel's initial-value theorem states that

$$
\lim _{s \rightarrow \infty} s X(s)=x\left(0^{+}\right)
$$

with $x\left(0^{+}\right)=\lim _{\epsilon \downarrow 0} x(\epsilon)$, provided $x(t)$ is regular at $t=0$

- Left-hand side: Laplace-domain
- Right-hand side: time-domain
- We do not prove this theorem, we only make it plausible
- Consider

$$
s X(s)=\int_{t=0^{-}}^{\infty} x(t) s e^{-s t} \mathrm{~d} t, \quad s \in \mathrm{ROC}_{x}
$$

The Laplace Transform

- Recall that the ROC is some right-half plane (or \mathbb{C})
- Take s real, positive, and sufficiently large so that $s \in \operatorname{ROC}_{x}$
- For increasing values of s, the function
$s e^{-s t}$ behaves as a Dirac distribution!

The Laplace Transform

- For example, consider a regular causal signal with an abscissa of convergence $\sigma_{\mathrm{c}}=0$
- In addition, we have

$$
\int_{t=0^{-}}^{\infty} s e^{-s t} \mathrm{~d} t=1 \quad \text { for all } s>0
$$

- Taking $s=1 / 4, s=1 / 2, s=1, s=10$, and $s=50$ we find

The Laplace Transform

- Abel's final-value theorem

- Let $X(s)$ denote the one-sided Laplace transform of $x(t), s \in \mathrm{ROC}_{x}$
- Abel's final-value theorem states that

$$
\lim _{s \rightarrow 0} s X(s)=\lim _{t \rightarrow \infty} x(t)
$$

provided $\lim _{t \rightarrow \infty} x(t)$ exists

- Left-hand side: Laplace-domain
- Right-hand side: time-domain

The Laplace Transform

Niels Henrik Abel
Born 1802
Died 1829

The Laplace Transform

One-Sided Laplace Transforms			
Time signal	One-sided Laplace transform	ROC	parameters
$e^{a t} u(t)$	$\frac{1}{s-a}$	$\operatorname{Re}(s)>\operatorname{Re}(a)$	$a \in \mathbb{C}$
$-e^{a t} u(-t)$	0	\mathbb{C}	$a \in \mathbb{C}$
$\frac{t^{k-1} e^{a t}}{(k-1)!} u(t)$	$\frac{1}{(s-a)^{k}}$	$\operatorname{Re}(s)>\operatorname{Re}(a)$	$a \in \mathbb{C}, k \in \mathbb{N}$
$-\frac{t^{k-1} e^{a t}}{(k-1)!} u(-t)$	$\frac{s-a}{(s-a)^{2}+\Omega_{0}^{2}}$	\mathbb{C}	$a \in \mathbb{C}, k \in \mathbb{N}$
$e^{a t} \cos \left(\Omega_{0} t\right) u(t)$	$\frac{\Omega_{0}}{(s-a)^{2}+\Omega_{0}^{2}}$	$\operatorname{Re}(s)>a$	$a, \Omega_{0} \in \mathbb{R}$
$e^{a t} \sin \left(\Omega_{0} t\right) u(t)$	$\operatorname{Re}(s)>a$	$a, \Omega_{0} \in \mathbb{R}$	
$\delta(t)$	\mathbb{C}	-	
$\delta^{\prime}(t)$	s	\mathbb{C}	-

- The Laplace Transform

Properties of the One-Sided Laplace Transform: $x_{\mathrm{c}}(t)=x(t) u(t), t \in \mathbb{R}$				
Property	Time signal	One-sided Laplace transform	ROC	Parameters
Convolution	$y_{\mathrm{c}}(t)=h_{\mathrm{c}}(t) * x_{\mathrm{c}}(t)$	$Y(s)=H(s) X(s)$	$\mathrm{ROC}_{h_{\mathrm{c}}} \cap \mathrm{ROC}_{\chi_{\mathrm{c}}}$	-
Diff. s-domain	$-t x(t)$	$\frac{\mathrm{d} X(s)}{\mathrm{d} s}$	$\mathrm{ROC}_{x_{\mathrm{c}}}$	-
Diff. t-domain	$\frac{\mathrm{d} x(t)}{\mathrm{d} t}$	$s X(s)-x\left(0^{-}\right)$	$\mathrm{ROC}_{x_{\mathrm{c}}}$	-
Int. t-domain	$\int_{\tau=0^{-}}^{t} x(\tau) \mathrm{d} \tau$	$\frac{1}{s} X(s)$	$\left\{\operatorname{ROC}_{x_{\mathrm{c}}} \mid \operatorname{Re}(s)>0\right\}$	-
Shift t-domain	$x_{\mathrm{c}}(t-\tau)$	$e^{-s \tau} X(s)$	$\mathrm{ROC}_{x_{\mathrm{c}}}$	$\tau \in \mathbb{R}, \tau>0$
Shift s-domain	$e^{a t} x(t)$	$X(s-a)$	$s-a \in \mathrm{ROC}_{x_{\mathrm{c}}}$	$a \in \mathbb{C}$
Scaling	$x(a t)$	$\frac{1}{a} X\left(\frac{s}{a}\right)$	$s / a \in \operatorname{ROC}_{x_{\mathrm{c}}}$	$a \in \mathbb{R}, a>0$

The Laplace Transform

- Circuit Theory Revisited
- KCL Kirchhoff's current law: the algebraic sum of all branch currents flowing into any node must be zero
- For a node with N branches

$$
\sum_{n=1}^{N} i_{n}(t)=0
$$

The Laplace Transform

- KVL Kirchhoff's voltage law: the algebraic sum of the branch voltages around any closed path in a network must be zero
- For a closed path consisting of N branches

$$
\sum_{n=1}^{N} v_{n}(t)=0
$$

- Let
$I_{n}(s)$ be the one-sided Laplace transform of $i_{n}(t)$
$n=1,2, \ldots, N$
$V_{n}(s)$ be the one-sided Laplace transform of $V_{n}(t)$
$n=1,2, \ldots, N$
- Since the Laplace transform is linear, we have

The Laplace Transform

- KCL Kirchhoff's current law in the Laplace domain:

$$
\sum_{n=1}^{N} I_{n}(s)=0
$$

- KVL Kirchhoff's voltage law in the Laplace domain:

$$
\sum_{n=1}^{N} V_{n}(s)=0
$$

The Laplace Transform

- Constitutive relations
- Resistor

$$
v(t)=R i(t) \quad \text { with one-sided Laplace transform } \quad V(s)=R I(s)
$$

- Capacitor

$$
i(t)=C \frac{\mathrm{~d} v(t)}{\mathrm{d} t} \quad \text { with one-sided Laplace transform } \quad I(s)=s C V(s)-C v\left(0^{-}\right)
$$

The Laplace Transform

- Inductor
$v(t)=L \frac{\mathrm{~d} i(t)}{\mathrm{d} t} \quad$ with one-sided Laplace transform $\quad V(s)=s L I(s)-L i\left(0^{-}\right)$

The Laplace Transform

- For circuits with vanishing initial conditions (the circuit is initially at rest), we define the Laplace impedance $Z(s)$ through the relation

$$
V(s)=Z(s) I(s)
$$

Resistor: $Z(s)=R, \quad$ Capacitor: $Z(s)=\frac{1}{s C}, \quad$ Inductor: $Z(s)=s L$

- Example. Consider the circuit sketched below
- Input signal: $i_{\mathrm{s}}(t)=I_{0} \delta(t)$
- Output signal: $v(t)$
- The circuit is initially at rest

The Laplace Transform

- Kirchhoff's current law in the time-domain:

$$
C \frac{\mathrm{~d} v}{\mathrm{~d} t}+R^{-1} v(t)=I_{0} \delta(t), \quad t>0^{-}
$$

$$
v\left(0^{-}\right)=0
$$

- Kirchhoff's current law in the s-domain:

$$
s C V(s)+R^{-1} V(s)=I_{0}
$$

- Divide by C to obtain

$$
\left(s+\frac{1}{\tau}\right) V(s)=\frac{I_{0}}{C}, \quad \tau=R C
$$

- We find

$$
V(s)=\frac{I_{0}}{C} \frac{1}{s+\frac{1}{\tau}}, \quad \tau=R C
$$

- Using the table for one-sided Laplace transforms, the voltage is found as

$$
v(t)=\frac{I_{0}}{C} e^{-t / \tau} u(t), \quad \tau=R C
$$

- The current through the capacitor follows as

$$
i_{\mathrm{c}}(t)=C \frac{\mathrm{~d} v(t)}{\mathrm{d} t}=I_{0}\left[\delta(t)-\frac{1}{\tau} e^{-t / \tau} u(t)\right], \quad \tau=R C
$$

The Laplace Transform

- Observe that we can also write

$$
I_{c}(s)=\frac{Y_{\text {cap }}(s)}{Y_{\text {cap }}(s)+Y_{\text {res }}(s)} I_{0}
$$

- $Y_{\text {cap }}(s)=s C$ and $Y_{\text {res }}(s)=R^{-1}$ are the Laplace domain admittances of the capacitor and resistor, respectively $\left(Y(s)=Z^{-1}(s)\right)$
- Substitution gives

$$
I_{c}(s)=\frac{s C}{s C+R^{-1}} I_{0}=\left(1-\frac{1}{\tau} \frac{1}{s+\frac{1}{\tau}}\right) I_{0}, \quad \tau=R C
$$

- Using the table for the one-sided Laplace transform, we again arrive at

$$
i_{\mathrm{c}}(t)=I_{0}\left[\delta(t)-\frac{1}{\tau} e^{-t / \tau} u(t)\right], \quad \tau=R C
$$

