Signals and Systems

2. Linear and Time-Invariant Systems

Linear and Time-Invariant Systems

- Contents

Linear and time-invariant systems
The impulse response and the convolution integral
Linear ordinary differential equations and LTI systems
Causality
BIBO stability

- Book:

Chapter 2

■ Exercises: 2.1, 2.2, 2.3, 2.4, 2.5, 2.8, 2.9, 2.11 (3rd Ed.)
2.1, 2.2, 2.5, 2.7, 2.8, 2.12, 2.14, 2.18 (2nd Ed.)

Linear and Time-Invariant Systems

- We consider a system with a single input and a single output
- Input signal: $x(t)$, output signal $y(t)$
- Such systems are called SISO systems
- SISO stands for Single Input Single Output
- If a system has Multiple Inputs and Multiple Outputs it is called a MIMO system
- We restrict ourselves to SISO systems

Linear and Time-Invariant Systems

- The action of the system on the input signal $x(t)$ is described by the system operator S
- We write

$$
y(t)=S\{x(t)\}
$$

- In this course we are particularly interested in systems that are Linear and Time-Invariant
- Such systems are called LTI systems
- Linearity Suppose we have two input signals $x_{1}(t)$ and $x_{2}(t)$. Denote the corresponding output signals by $y_{1}(t)$ and $y_{2}(t)$:

$$
y_{1}(t)=S\left\{x_{1}(t)\right\} \quad \text { and } \quad y_{2}(t)=S\left\{x_{2}(t)\right\}
$$

The system is called linear if

$$
\begin{aligned}
y(t) & =S\left\{\alpha x_{1}(t)+\beta x_{2}(t)\right\} \\
& =\alpha S\left\{x_{1}(t)\right\}+\beta S\left\{x_{2}(t)\right\} \\
& =\alpha y_{1}(t)+\beta y_{2}(t)
\end{aligned}
$$

for any two constants α and β

Linear and Time-Invariant Systems

- Any linear combination of input signals produces the same linear combination of their corresponding output signals
- Taking $\beta=0$, it follows from the above definition that

$$
y(t)=S\left\{\alpha x_{1}(t)\right\}=\alpha S\left\{x_{1}(t)\right\}=\alpha y_{1}(t)
$$

- In other words, if you scale the input signal by a factor α, the output signal will scale with the same factor

Linear and Time-Invariant Systems

- Example Consider a SISO system with input signal $x(t)$ and an output signal given by

$$
y(t)=\frac{1}{T} \int_{\tau=t-T}^{t} x(\tau) \mathrm{d} \tau+B
$$

where B is a constant. Such a system is called a biased averager (can you see why?)

- Scaling the input signal by a factor α, we obtain the output signal

$$
\frac{\alpha}{T} \int_{\tau=t-T}^{t} x(\tau) \mathrm{d} \tau+B
$$

which is not equal to $\alpha y(t)$ unless $B=0$

- The averager is nonlinear for $B \neq 0$
- For $B=0$, it is easy to see that a linear combination of input signals produces the same linear combination of the corresponding output signals
- The averager is linear for $B=0$

Linear and Time-Invariant Systems

- Time-Invariance Let $y(t)$ be the output signal that corresponds to an input signal $x(t)$:

$$
y(t)=S\{x(t)\}
$$

- The system is called time-invariant if

$$
y(t \pm \tau)=S\{x(t \pm \tau)\}
$$

for any time shift $\tau>0$

- In words: shifting your input signal produces an equally time-shifted output signal

Linear and Time-Invariant Systems

- Let the Dirac distribution be the input signal of an LTI system
- The corresponding output signal is written as $h(t)$ and is called the impulse response:

$$
h(t)=S\{\delta(t)\}
$$

- We claim that if you know the impulse response of an LTI system then you know the response to any other input signal!

Linear and Time-Invariant Systems

- To show this, let $y(t)$ be the output signal that corresponds to an input signal $x(t)$:

$$
y(t)=S\{x(t)\}
$$

- Because of the sifting property of the Dirac distribution, we have

$$
x(t)=\int_{\tau=-\infty}^{\infty} x(\tau) \delta(t-\tau) \mathrm{d} \tau
$$

- The right-hand side of the above expression can be seen as a continuous weighted summation of shifted Dirac distributions

Linear and Time-Invariant Systems

- Substitution gives

$$
y(t)=S\left\{\int_{\tau=-\infty}^{\infty} x(\tau) \delta(t-\tau) \mathrm{d} \tau\right\}
$$

- Now note that S is linear and acts on functions that depend on time t
- This allows us to write

$$
y(t)=\int_{\tau=-\infty}^{\infty} x(\tau) S\{\delta(t-\tau)\} \mathrm{d} \tau
$$

Linear and Time-Invariant Systems

- Since the system is time-invariant as well, we have

$$
h(t-\tau)=S\{\delta(t-\tau)\}
$$

- and we arrive at

$$
y(t)=\int_{\tau=-\infty}^{\infty} x(\tau) h(t-\tau) \mathrm{d} \tau
$$

- Knowing the impulse response $h(t)$, we can determine the response $y(t)$ to any input signal $x(t)$ by evaluating the above integral

Linear and Time-Invariant Systems

- This integral is called a convolution integral
- Short-hand notation:

$$
y=x * h \quad \text { or } \quad y(t)=x(t) * h(t)
$$

- The asterisk is called the convolution product
- The output signal $y(t)$ is equal to the convolution product of the input signal $x(t)$ and the impulse response $h(t)$

Linear and Time-Invariant Systems

- For two real numbers a and b, we have

$$
a b=b a
$$

- The product of two real numbers commutes
- Is this also true for the convolution product? In other words, do we have

$$
x * h=h * x ?
$$

Linear and Time-Invariant Systems

- The answer is yes. Let's check it.

$$
\begin{aligned}
y(t) & =x * h \\
& =\int_{\tau=-\infty}^{\infty} x(\tau) h(t-\tau) \mathrm{d} \tau \stackrel{p=t-\tau}{=} \int_{p=-\infty}^{\infty} x(t-p) h(p) \mathrm{d} p \\
& =\int_{p=-\infty}^{\infty} h(p) x(t-p) \mathrm{d} p=h * x
\end{aligned}
$$

- Conclusion: the convolution product of two signals commutes (due to the minus sign in the argument of h)

Linear and Time-Invariant Systems

- If you change the minus sign into a plus sign you get what is called the cross-correlation of the two signals $x(t)$ and $h(t)$ provided these signals are both real-valued:

$$
y(t)=\int_{\tau=-\infty}^{\infty} x(\tau) h(t+\tau) \mathrm{d} \tau=x \star h
$$

- The cross correlation of two signals does not commute

$$
x \star h \neq h \star x
$$

```
Linear and Time-Invariant Systems
```

- For the product of real numbers, there exists an identity element called "one" and written as 1 for which

$$
a=a \cdot 1=1 \cdot a
$$

- What is the identity element for the convolution product?
- We already know the answer to this question
- It is the Dirac distribution!

$$
x=x * \delta=\delta * x
$$

- The convolution product is also associative, that is, for three signals u, v, and w, we have (check this yourself)

$$
(u * v) * w=u *(\nu * w)
$$

Linear and Time-Invariant Systems

- This property can be exploited to determine the total impulse function of two LTI systems interconnected in cascade
- System 1: input signal $x(t)$, impulse function $h_{1}(t)$, output signal $u(t)$
- System 2: input signal $u(t)$, impulse function $h_{2}(t)$, output signal $y(t)$
- We assume that System 2 does not "load" System 1

Linear and Time-Invariant Systems

- Response of the total system:

$$
y=u * h_{2}=\left(x * h_{1}\right) * h_{2}=x *\left(h_{1} * h_{2}\right)=x * h
$$

- where we have introduced the impulse function of the total system as

$$
h=h_{1} * h_{2}=h_{2} * h_{1}
$$

- Note that since the convolution product of two signals commute, we can interchange the order of the subsystems without affecting the output signal $y(t)$ (provided both systems do not "load" each other)

Linear and Time-Invariant Systems

- Computing the convolution integral: Example 1
- We compute the convolution of the rectangular pulse p with itself
- Recall that

$$
p(t)= \begin{cases}1 & \text { for } 0<t<1 \\ 0 & \text { otherwise }\end{cases}
$$

- By definition, we have

$$
y(t)=p * p=\int_{\tau=-\infty}^{\infty} p(\tau) p(t-\tau) \mathrm{d} \tau
$$

- Since p vanishes outside the interval $(0,1)$, the integral simplifies to

$$
y(t)=\int_{\tau=0}^{1} p(t-\tau) \mathrm{d} \tau
$$

- It is convenient to rewrite this integral in such a way that the time coordinate t appears in the integration limits of the integral
- We use the substitution $t^{\prime}=t-\tau$ to achieve this and arrive at

$$
y(t)=\int_{t^{\prime}=t-1}^{t} p\left(t^{\prime}\right) \mathrm{d} t^{\prime}
$$

Linear and Time-Invariant Systems

- Now observe that for $t<0$ we integrate over an interval outside the support of p. Consequently,

$$
y(t)=0 \text { for } t<0
$$

- Similarly, for $t-1>1$ we again integrate over an interval outside the support of p. We have

$$
y(t)=0 \text { for } t>2
$$

Linear and Time-Invariant Systems

- For $0<t<1$ the lower bound falls outside of the support of p, while the upper bound belongs to this support. We have

$$
y(t)=\underbrace{\int_{t^{\prime}=t-1}^{0} p\left(t^{\prime}\right) \mathrm{d} t^{\prime}}_{=0}+\int_{t^{\prime}=0}^{t} p\left(t^{\prime}\right) \mathrm{d} t^{\prime}=\int_{t^{\prime}=0}^{t} \mathrm{~d} t^{\prime}=t \quad \text { for } 0<t<1
$$

- Finally, for $1<t<2$ the upper bound falls outside of the support of p and the lower bound is in the support of p. In this case, we have

$$
y(t)=\int_{t^{\prime}=t-1}^{1} p\left(t^{\prime}\right) \mathrm{d} t^{\prime}+\underbrace{\int_{t^{\prime}=1}^{t} p\left(t^{\prime}\right) \mathrm{d} t^{\prime}}_{=0}=\int_{t^{\prime}=t-1}^{1} \mathrm{~d} t^{\prime}=2-t \quad \text { for } 1<t<2
$$

Linear and Time-Invariant Systems

- Putting everything together, we find

$$
y(t)=\Lambda(t)
$$

- The convolution of the rectangular pulse with itself produces the triangular pulse function

Animation by Brian Amberg and adapted by Tinos (Wikipedia)

Linear and Time-Invariant Systems

- Computing the convolution integral: Example 2
- We graphically determine the convolution of $p(t)$ and $p(t / 10)$ (we use the blackboard for this)
- Finally, if the support of a signal x is $\left(\ell_{x}, u_{x}\right)$ and the support of a signal h is $\left(\ell_{h}, u_{h}\right)$ then

$$
\text { the support of } y(t)=x(t) * h(t) \text { is }\left(\ell_{x}+\ell_{h}, u_{x}+u_{h}\right)
$$

Verify this statement!

Linear and Time-Invariant Systems

Another example:

Linear and Time-Invariant Systems

- Up till now we have been looking at fairly general systems whose action on the input signal is described by some operator S
- Let us now be more specific and consider systems described by the linear ordinary differential equation

$$
\begin{aligned}
& \left(a_{N} \frac{\mathrm{~d}^{N}}{\mathrm{~d} t^{N}}+a_{N-1} \frac{\mathrm{~d}^{N-1}}{\mathrm{~d} t^{N-1}}+\ldots+a_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+a_{0}\right) y(t)= \\
& \quad\left(b_{M} \frac{\mathrm{~d}^{M}}{\mathrm{~d} t^{M}}+b_{M-1} \frac{\mathrm{~d}^{M-1}}{\mathrm{~d} t^{M-1}}+\ldots+b_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+b_{0}\right) x(t)
\end{aligned}
$$

which holds for $t>0$

- N and M are positive integers

Linear and Time-Invariant Systems

- $x(t)$ is the prescribed input signal
- $y(t)$ is the desired output signal
- To obtain the output signal $y(t)$, we also need the N initial conditions

$$
y(0) \quad \text { and }\left.\quad \frac{\mathrm{d}^{k} y(t)}{\mathrm{d} t^{k}}\right|_{t=0} \quad \text { for } k=1,2, \ldots, N-1
$$

- RLC circuits, mechanical systems, etc. can all be described by a differential equation of the above form

Linear and Time-Invariant Systems

- Further on we will show you how to solve the differential equation using the Laplace transform
- For now it suffices to say that the solution $y(t)$ is given by

$$
y(t)=y_{\mathrm{zs}}(t)+y_{\mathrm{zi}}(t)
$$

- $y_{\mathrm{zs}}(t)$ is called the zero-state response. This is the solution exclusively due to the input with the initial conditions set to zero
- $y_{\mathrm{zi}}(t)$ is called the zero-input response. This is the solution exclusively due to the initial conditions with the input set to zero

Linear and Time-Invariant Systems

- For vanishing initial conditions the system is linear and time-invariant (LTI). This can easily be seen from the differential equation (check this for yourself)
- In this case the zero-input response vanishes and the solution is equal to the zero-state response
- For nonvanishing initial conditions, the system is no longer an LTI system
- Example. Consider a circuit consisting of a resistor of R in series with an inductor L and a voltage source $v(t)=B u(t)$. The initial current in the inductor is I_{0}. The input signal of the system is $v(t)$, the current $i(t)$ in the circuit is the output signal.
- From Kirchhoff's voltage law:

$$
L \frac{\mathrm{~d} i(t)}{\mathrm{d} t}+\operatorname{Ri}(t)=v(t) \quad t>0
$$

with initial condition $i(0)=I_{0}$

Linear and Time-Invariant Systems

- The output signal is given by

$$
i(t)=i_{\mathrm{zs}}(t)+i_{\mathrm{zi}}(t), \quad t>0
$$

- with

$$
i_{\mathrm{zs}}(t)=\frac{B}{R}\left(1-e^{-t / \tau}\right), \quad i_{\mathrm{zi}}(t)=I_{0} e^{-t / \tau}, \quad \text { and } \quad \tau=L / R
$$

- If we double the amplitude of the input signal then the output signal becomes

$$
i(t)=2 i_{\mathrm{zs}}(t)+i_{\mathrm{zi}}(t)
$$

with $i_{\mathrm{zs}}(t)$ and $i_{\mathrm{zi}}(t)$ as above

Linear and Time-Invariant Systems

- We observe that the output is not doubled, since $i_{\mathrm{zi}}(t)$ does not vanish
- However, for $I_{0}=0$ (vanishing initial condition) we do have $i_{\mathrm{zi}}(t)=0$ and the output is doubled in this case
- With vanishing initial conditions, the system is linear

Linear and Time-Invariant Systems

- A continuous-time system S is causal if
* whenever its input $x(t)=0$, and there are no initial conditions, the output is $y(t)=0$
* the output $y(t)$ does not depend on future inputs

Linear and Time-Invariant Systems

- An LTI system is causal if

$$
h(t)=0 \quad \text { for } t<0 \quad \text { (causal LTI system) }
$$

- Indeed, for an LTI system we have the convolution integral

$$
y(t)=\int_{\tau=-\infty}^{\infty} x(\tau) h(t-\tau) \mathrm{d} \tau
$$

- and writing this integral as

$$
y(t)=\int_{\tau=-\infty}^{t} x(\tau) h(t-\tau) \mathrm{d} \tau+\int_{t}^{\infty} x(\tau) h(t-\tau) \mathrm{d} \tau
$$

Linear and Time-Invariant Systems

- we observe that in the second integral integration takes place over future inputs
- For a causal LTI system, these inputs cannot contribute to the output signal at time instant t
- Consequently, for a causal system we must have $h(t-\tau)=0$ for $t<\tau<\infty$ or $h(t)=0$ for $t<0$
- In case the LTI system is causal we are left with

$$
y(t)=\int_{\tau=-\infty}^{t} x(\tau) h(t-\tau) \mathrm{d} \tau
$$

Linear and Time-Invariant Systems

- In addition, if the input signal also vanishes prior to $t=0$, that is, if $x(t)=0$ for $t<0$, then the convolution integral simplifies even further. In this case we have

$$
y(t)=\int_{\tau=0}^{t} x(\tau) h(t-\tau) \mathrm{d} \tau
$$

Linear and Time-Invariant Systems

- Finally, we discuss the concept of BIBO stability
- BIBO stands for Bounded Input Bounded Output
- We are given a bounded input signal $x(t)$, that is, a signal that satisfies

$$
|x(t)| \leq M
$$

for some positive M

- We ask: Under what condition(s) is the output signal $y(t)$ also bounded?

Linear and Time-Invariant Systems

- To answer this question, consider

$$
\begin{aligned}
|y(t)| & =\left|\int_{\tau=-\infty}^{\infty} x(t-\tau) h(\tau) \mathrm{d} \tau\right| \\
& \leq \int_{\tau=-\infty}^{\infty}|x(t-\tau)||h(\tau)| \mathrm{d} \tau \\
& \leq M \int_{\tau=-\infty}^{\infty}|h(\tau)| \mathrm{d} \tau
\end{aligned}
$$

Linear and Time-Invariant Systems

- From this inequality it follows that if

$$
\int_{\tau=-\infty}^{\infty}|h(\tau)| \mathrm{d} \tau<\infty
$$

then the output signal $y(t)$ is bounded as well

- If the impulse response is absolutely integrable (the action of the impulse response is finite) then the output is bounded as well
- An LTI system is called BIBO stable if the impulse response is absolutely integrable

