Signals and Systems

1. Standard Signals

Standard Signals

- Contents

Standard signals
Even and odd signals
The energy and power of continuous-time signals
Periodic signals
The Dirac distribution
© Book:
Chapter 1

■ Exercises: 1.1, 1.2, 1.3, 1.4, 1.6, 1.9, 1.12 (3rd Ed.)
1.1, 1.3, 1.4, 1.6, 1.8, 1.13, 1.16 (2nd Ed.)

Additional exercises at the end of this lecture

Standard signals

- The Heaviside unit step function

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t>0\end{cases}
$$

- The step function can be used to model switch-on phenomena
- The step function $u(-t)$ can be used to model switch-off phenomena

Oliver Heaviside
Born 1850
Died 1925

Standard signals

- The sign or signum function

$$
\operatorname{sign}(t)= \begin{cases}-1 & \text { for } t<0 \\ 1 & \text { for } t>0\end{cases}
$$

- The sign function in terms of unit step functions

$$
\operatorname{sign}(t)=2 u(t)-1 \quad \text { or } \quad \operatorname{sign}(t)=u(t)-u(-t)
$$

- The rectangular pulse function

$$
p(t)= \begin{cases}1 & \text { for } 0<t<1 \\ 0 & \text { otherwise }\end{cases}
$$

- The pulse function in terms of unit step functions

$$
p(t)=u(t)-u(t-1)
$$

- The ramp function

$$
r(t)= \begin{cases}t & \text { for } t>0 \\ 0 & \text { otherwise }\end{cases}
$$

- The ramp function in terms of the unit step function

$$
r(t)=t u(t)
$$

Standard signals

- The triangular pulse function

$$
\Lambda(t)= \begin{cases}t & \text { for } 0 \leq t \leq 1 \\ 2-t & \text { for } 1<t \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

- The triangular pulse function in terms of ramp functions

$$
\Lambda(t)=r(t)-2 r(t-1)+r(t-2)
$$

Standard signals

- The sinc function

$$
S(t)=\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t} \quad t \in \mathbb{R}
$$

- Some properties:
- $S(0)=1$
- $S(n)=0, n$ a nonzero integer
- Integral:

$$
\int_{t=-\infty}^{\infty} S(t) \mathrm{d} t=1
$$

Standard signals

Even and odd signals

- A continuous-time signal $x(t)$ is called even if

$$
x(-t)=x(t) \quad \text { for all } t \in \mathbb{R}
$$

- A continuous-time signal $x(t)$ is called odd if

$$
x(-t)=-x(t) \quad \text { for all } t \in \mathbb{R}
$$

Even and odd signals

- A signal $y(t)$ defined on the entire t-axis can be written as a superposition of an even signal $y_{\mathrm{e}}(t)$ and an odd signal $y_{\mathrm{o}}(t)$:

$$
y(t)=y_{\mathrm{e}}(t)+y_{\mathrm{o}}(t)
$$

with

$$
y_{\mathrm{e}}(t)=\frac{y(t)+y(-t)}{2} \quad \text { and } \quad y_{\mathrm{o}}(t)=\frac{y(t)-y(-t)}{2}
$$

Energy of a continuous-time signal

- The energy of a continuous-time signal $x(t)$ is defined as

$$
E_{x}=\int_{t=-\infty}^{\infty}|x(t)|^{2} \mathrm{~d} t
$$

- A continuous-time signal $x(t)$ is called a finite-energy signal or square integrable if its energy is finite, that is, if

$$
E_{x}<\infty \quad \text { or } \quad \int_{t=-\infty}^{\infty}|x(t)|^{2} \mathrm{~d} t<\infty
$$

The action of a continuous-time signal

- The integral

$$
\int_{t=-\infty}^{\infty}|x(t)| \mathrm{d} t
$$

is sometimes called the action of the continuous-time signal $x(t)$. If the action is finite, that is, if

$$
\int_{t=-\infty}^{\infty}|x(t)| \mathrm{d} t<\infty
$$

the signal is called absolutely integrable

The power of a continuous-time signal

- The power of a continuous-time signal $x(t)$ is defined as

$$
P_{x}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{t=-T}^{T}|x(t)|^{2} \mathrm{~d} t
$$

- From this definition it immediately follows that a finite-energy signal has zero power:

$$
P_{x}=0 \text { for a finite-energy signal } x(t)
$$

Periodic signals

- A continuous-time signal $x(t)$ is called periodic if there exists a $T>0$ called a period of $x(t)$ such that

$$
x(t+T)=x(t) \quad \text { for every } t \in \mathbb{R}
$$

- A period of a periodic signal is not unique
- If T is a period, then $2 T, 3 T, \ldots$ are also periods of $x(t)$
- The smallest period T of $x(t)$ is called the fundamental period and is denoted as T_{0}
- The fundamental period T_{0} is unique

Periodic signals

- Suppose we are given two periodic signals $x(t)$ and $y(t)$
- Signal $x(t)$ has a fundamental period T_{0}
- Signal $y(t)$ has a fundamental period T_{1}
- Now consider the sum of these two periodic signals

$$
z(t)=x(t)+y(t)
$$

- $z(t)$ is periodic if $M \cdot T_{1}$ periods of $y(t)$ can be exactly included into $N \cdot T_{0}$ periods of $x(t)$
- The fundamental period of $z(t)$ is then the least common multiple of T_{0} and T_{1}

Periodic signals

- Example 1: $x(t)=\sin (\sqrt{3} \pi t)$ and $y(t)=\sin (\pi t)$. The signal $z(t)=x(t)+$ $y(t)$ is not periodic

- Example 2: $x(t)=\sin (\pi t)$ and $y(t)=\sin (3 \pi t)$. In this case $T_{0}=2 \mathrm{~s}$ and $T_{1}=2 / 3 \mathrm{~s}$ and $z(t)$ is periodic. The fundamental period of $z(t)$ is $3 T_{1}=T_{0}$.

Energy and power of periodic signals

- Let $x(t)$ denote a continuous-time periodic signal with fundamental pe$\operatorname{riod} T_{0}$
- Since $x(t)$ is periodic, $|x(t)|^{2}$ is periodic as well and consequently E_{x} is infinite

A periodic signal is an infinite energy signal

- What about the power?

Energy and power of periodic signals

- To answer this question, we first have another look at the energy integral
- Since we know that the signal is periodic with fundamental period T_{0}, we compute the energy integral as follows
- First, consider the integral

$$
E_{x}^{(N)}=\int_{t=t_{0}-N T_{0}}^{t_{0}+N T_{0}}|x(t)|^{2} \mathrm{~d} t
$$

- where t_{0} is an arbitrary fixed time instant and N a positive integer

Energy and power of periodic signals

- The length of the integration interval is $2 N T_{0}$ and the energy and power of the periodic signal follow as

$$
E_{x}=\lim _{N \rightarrow \infty} E_{x}^{(N)} \quad \text { and } \quad P_{x}=\lim _{N \rightarrow \infty} \frac{1}{2 N T_{0}} E_{x}^{(N)}
$$

- Using the periodicity of $x(t)$, we find that

$$
E_{x}^{(N)}=2 N \int_{t=t_{0}}^{t_{0}+T_{0}}|x(t)|^{2} \mathrm{~d} t
$$

- Clearly, $E_{x}^{(N)}$ grows linearly in N as N increases and the limit $\lim _{N \rightarrow \infty} E_{x}^{(N)}$ does not exists (as claimed above)

Energy and power of periodic signals

- The power, however, does exist and is given by

$$
P_{x}=\lim _{N \rightarrow \infty} \frac{1}{2 N T_{0}} E_{x}^{(N)}=\frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}}|x(t)|^{2} \mathrm{~d} t
$$

The Dirac distribution

- A distribution generalizes the classical concept of a function
- Distributions are also known as generalized functions
- Distributions were introduced by the Russian mathematician Sergei Sobolev in his work on second-order hyperbolic partial differential equations (loosely speaking, differential equations that describe wave phenomena)
- Distribution theory was developed further and extended by the French mathematician LaUrent Schwartz

- The Dirac distribution

Sergey Sobolev
Born 1908 Died 1989

Laurent Schwartz
Born 1915
Died 2002

The Dirac distribution

- We only give a brief and informal introduction to distributions
- Much more on distribution theory can be found in
- A.H. Zemanian, Distribution Theory and Transform Analysis - An introduction to Generalized Functions, with Applications, Dover Publications, 2003
- M.J. Lighthill, An Introduction to Fourier Analysis and Generalised Functions, Cambridge Monographs on Mechanics, 2008
- Before discussing distributions, we first introduce the space of testing functions \mathscr{D}
- The space of testing functions \mathscr{D} consists of all complex-valued functions $\varphi(t)$ that are infinitely smooth and vanish outside some finite interval
- Infinitely smooth means: can be differentiated an infinite number of times

The Dirac distribution

- The finite interval (support) need not be the same for all testing functions*
- The support of testing function $\varphi_{1}(t)$ may be different from the support of testing function $\varphi_{2}(t)$
- Example of a testing function:

$$
\varphi(t)= \begin{cases}\exp \left(\frac{1}{t^{2}-1}\right) & \text { for }|t|<1 \\ 0 & \text { for }|t| \geq 1\end{cases}
$$

* Recall that the support of a function f is the set of points in the domain of f where f is nonzero

The Dirac distribution

- In general, a functional is a rule that assigns a number to every element of a certain set of functions
- We take the space of testing functions \mathscr{D} as this set and consider functionals that assign a complex number to every element of \mathscr{D}
- In our case a functional is a rule that assigns a complex number to every testing function in \mathscr{D}
- The number that a functional f assigns to a testing function φ is denoted as $\langle f, \varphi\rangle$

The Dirac distribution

- Example: Let $f(t)$ be an integrable function
- By this we mean integrable over every finite interval
- Corresponding to this function, we can define a functional f through the integral

$$
\langle f, \varphi\rangle=\langle f(t), \varphi(t)\rangle=\int_{t=-\infty}^{\infty} f(t) \varphi(t) \mathrm{d} t=\text { a number }
$$

The Dirac distribution

- A distribution is a functional f with two additional properties
* Linearity:

$$
\left\langle f, \varphi_{1}+\varphi_{2}\right\rangle=\left\langle f, \varphi_{1}\right\rangle+\left\langle f, \varphi_{2}\right\rangle
$$

for any two testing functions φ_{1} and φ_{2} from \mathscr{D} and

$$
\langle f, \alpha \varphi\rangle=\alpha\langle f, \varphi\rangle
$$

for any complex number α

* Continuity: For any set of testing functions $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ that converges in \bar{D} to φ, the sequence of numbers $\left\{\left\langle f, \varphi_{n}\right\rangle\right\}_{n=1}^{\infty}$ converges to $\langle f, \varphi\rangle$
- A distribution is a continuous linear functional on the space of testing functions \mathscr{D}

The Dirac distribution

- Up to this point we have associated a distribution f to an ordinary function f
- For example, with the function $f(t)=p(t)$ we can associate the distribution

$$
\langle p, \varphi\rangle=\int_{t=-\infty}^{\infty} p(t) \varphi(t) \mathrm{d} t=\int_{t=0}^{1} \varphi(t) \mathrm{d} t=\text { a number }
$$

- Distributions associated with ordinary functions are called regular

The Dirac distribution

- Let us now consider a distribution that assigns the value $\varphi(0)$ to a testing function $\varphi(t)$
- This distribution is written as $\delta(t)$ and is called the Dirac distribution
- By definition, we have

$$
\langle\delta(t), \varphi(t)\rangle=\varphi(0)
$$

- In words: you take a testing function $\varphi(t)$ from \mathscr{D}. The Dirac distribution assigns the value $\varphi(0)$ to this testing function
- Using the integral, we have

$$
\langle\delta(t), \varphi(t)\rangle=\int_{t=-\infty}^{\infty} \delta(t) \varphi(t) \mathrm{d} t=\varphi(0)
$$

- No ordinary function has this property
- The Dirac distribution is an example of a singular distribution function

The Dirac distribution

- We write $f(t)=\delta(t)$ only symbolically (as if the Dirac distribution is an ordinary function)
- The Dirac distribution is sometimes called the delta function, Dirac impulse function, or simply impulse function
- The Dirac distribution is called the "stoot" in Dutch

The Dirac distribution

Paul Dirac
Born 1902
Died 1984

Biography

- Consider the ordinary Gaussian $(\epsilon>0)$

$$
f_{\epsilon}(t)=\frac{1}{\sqrt{\pi \epsilon}} e^{-t^{2} / \epsilon}
$$

- This function is normalized in the sense that

$$
\int_{t=-\infty}^{\infty} f_{\epsilon}(t) \mathrm{d} t=1 \quad \text { for any } \epsilon>0
$$

The Dirac distribution

- To this Gaussian function we can associate the regular distribution

$$
\left\langle f_{\epsilon}(t), \varphi(t)\right\rangle=\int_{t=-\infty}^{\infty} f_{\epsilon}(t) \varphi(t) \mathrm{d} t=\frac{1}{\sqrt{\pi \epsilon}} \int_{t=-\infty}^{\infty} e^{-t^{2} / \epsilon} \varphi(t) \mathrm{d} t
$$

- For "very small" values of ϵ, we have

$$
\left\langle f_{\epsilon}(t), \varphi(t)\right\rangle=\frac{1}{\sqrt{\pi \epsilon}} \int_{t=-\infty}^{\infty} e^{-t^{2} / \epsilon} \varphi(t) \mathrm{d} t \approx \varphi(0) \int_{t=-\infty}^{\infty} f_{\epsilon}(t) \mathrm{d} t=\varphi(0)
$$

- and we may write

$$
\delta(t)=\lim _{\epsilon \downarrow 0} f_{\varepsilon}(t)=\lim _{\epsilon \downarrow 0} \frac{1}{\sqrt{\pi \epsilon}} e^{-t^{2} / \epsilon}
$$

- The Dirac distribution

The Dirac distribution

The Dirac distribution

The Dirac distribution

- Clearly, we have

$$
\int_{t=a}^{b} \delta(t) \mathrm{d} t= \begin{cases}1 & \text { if } 0 \in(a, b) \\ 0 & \text { if } 0 \notin(a, b)\end{cases}
$$

- Also note that if t is expressed in seconds then the SI unit of the Dirac distribution is s^{-1}
- If t is expressed in meters (in this case we typically use the letter x instead of t) then the SI unit of the Dirac distribution is m^{-1}

The Dirac distribution

- Another one that does the same job is

$$
\delta(t)=\lim _{a \rightarrow \infty} \frac{\sin (a t)}{\pi t}
$$

- Note that since

$$
\frac{\sin (a t)}{\pi t}=\frac{1}{2 \pi} \int_{\Omega=-a}^{a} e^{\mathrm{j} \Omega t} \mathrm{~d} \Omega
$$

we also have

$$
\delta(t)=\frac{1}{2 \pi} \int_{\Omega=-\infty}^{\infty} e^{\mathrm{j} \Omega t} \mathrm{~d} \Omega
$$

- This latter relation is sometimes referred to as a completeness relation
- The above expressions only make sense as distributions, of course

The Dirac distribution

- Given a signal $f(t)$ continuous at the origin
- We claim that the two distributions $f(t) \delta(t)$ and $f(0) \delta(t)$ are equal
- In other words

$$
f(t) \delta(t)=f(0) \delta(t)
$$

- We show this by working out the distributions on the left- and right-hand side
- Both distributions should produce the same number
- Let's start with the left-hand side
- We have

$$
\begin{aligned}
\langle f(t) \delta(t), \varphi(t)\rangle & =\int_{t=-\infty}^{\infty}[f(t) \delta(t)] \varphi(t) \mathrm{d} t \\
& =\int_{t=-\infty}^{\infty} \delta(t)[f(t) \varphi(t)] \mathrm{d} t \\
& =f(0) \varphi(0)
\end{aligned}
$$

- Now for the right-hand side:

$$
\begin{aligned}
\langle f(0) \delta(t), \varphi(t)\rangle & =\int_{t=-\infty}^{\infty}[f(0) \delta(t)] \varphi(t) \mathrm{d} t \\
& =f(0) \int_{t=-\infty}^{\infty} \delta(t) \varphi(t) \mathrm{d} t \\
& =f(0) \varphi(0)
\end{aligned}
$$

- We conclude that our claim is correct

The Dirac distribution

- The shifted delta distribution $\delta\left(t-t_{0}\right)$ associates the number $\varphi\left(t_{0}\right)$ to a testing function $\varphi(t)$
- We have

$$
\left\langle\delta\left(t-t_{0}\right), \varphi(t)\right\rangle=\varphi\left(t_{0}\right)
$$

- or in terms of an integral

$$
\int_{t=-\infty}^{\infty} \delta\left(t-t_{0}\right) \varphi(t) \mathrm{d} t=\varphi\left(t_{0}\right)
$$

- This is sometimes called the sifting property of the Dirac distribution (zeefeigenschap van de Dirac distributie)

The Dirac distribution

- For the shifted Dirac distribution we have

$$
\int_{t=a}^{b} \delta\left(t-t_{0}\right) \mathrm{d} t= \begin{cases}1 & \text { if } t_{0} \in(a, b) \\ 0 & \text { if } t_{0} \notin(a, b)\end{cases}
$$

- Moreover, for a signal $f(t)$ continuous at $t=t_{0}$

$$
f(t) \delta\left(t-t_{0}\right)=f\left(t_{0}\right) \delta\left(t-t_{0}\right)
$$

The Dirac distribution - scaling property

- Let a be a nonzero real number
- Scaling property of the Dirac distribution

$$
\delta(a t)=\frac{1}{|a|} \delta(t)
$$

- We verify that these distributions are indeed equal
- For the left-hand side we have

$$
\langle\delta(a t), \varphi(t)\rangle=\int_{t=-\infty}^{\infty} \delta(a t) \varphi(t) \mathrm{d} t
$$

The Dirac distribution - scaling property

- First consider the case $a>0$. Setting $\tau=a t$ results in

$$
\langle\delta(a t), \varphi(t)\rangle=\frac{1}{a} \int_{\tau=-\infty}^{\infty} \delta(\tau) \varphi(\tau / a) \mathrm{d} \tau=\frac{1}{a} \varphi(0)
$$

- Next, consider the case $a<0$. With $\tau=a t$ we now have

$$
\begin{aligned}
\langle\delta(a t), \varphi(t)\rangle & =\frac{1}{a} \int_{\tau=\infty}^{-\infty} \delta(\tau) \varphi(\tau / a) \mathrm{d} \tau \\
& =-\frac{1}{a} \int_{\tau=-\infty}^{\infty} \delta(\tau) \varphi(\tau / a) \mathrm{d} \tau \\
& =-\frac{1}{a} \varphi(0)
\end{aligned}
$$

The Dirac distribution - scaling property

- Both cases ($a>0$ and $a<0$) can be combined as

$$
\langle\delta(a t), \varphi(t)\rangle=\frac{1}{|a|} \varphi(0)
$$

- For the right-hand side we obtain

$$
\begin{aligned}
\left\langle\frac{1}{|a|} \delta(t), \varphi(t)\right\rangle & =\int_{t=-\infty}^{\infty} \frac{1}{|a|} \delta(t) \varphi(t) \mathrm{d} t \\
& =\frac{1}{|a|} \int_{t=-\infty}^{\infty} \delta(t) \varphi(t) \mathrm{d} t \\
& =\frac{1}{|a|} \varphi(0)
\end{aligned}
$$

- and we conclude that the two distributions are equal

The Dirac distribution is even

- Special case: $a=-1$. We obtain

$$
\delta(-t)=\delta(t)
$$

- The Dirac distribution is even
- Following the same verification procedure as above, we can also show that

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=\delta(t)
$$

- The derivative of the unit step function is equal to the Dirac distribution!
- The unit step function is not differentiable at $t=0$, of course, but it can be differentiated in the sense of distributions
- We start with the left-hand side

$$
\left\langle\frac{\mathrm{d} u}{\mathrm{~d} t}, \varphi(t)\right\rangle=\int_{t=-\infty}^{\infty} \frac{\mathrm{d} u}{\mathrm{~d} t} \varphi(t) \mathrm{d} t=\left.\lim _{T \rightarrow \infty} u(t) \varphi(t)\right|_{t=-T} ^{T}-\int_{t=-\infty}^{\infty} u(t) \frac{\mathrm{d} \varphi}{\mathrm{~d} t} \mathrm{~d} t
$$

- The first-term on the right-hand side of the above equation vanishes, since a testing function has bounded support

The Dirac distribution - derivative of the unit step function

- We are left with

$$
\left\langle\frac{\mathrm{d} u}{\mathrm{~d} t}, \varphi(t)\right\rangle=-\int_{t=-\infty}^{\infty} u(t) \frac{\mathrm{d} \varphi}{\mathrm{~d} t} \mathrm{~d} t=-\int_{t=0}^{\infty} \frac{\mathrm{d} \varphi}{\mathrm{~d} t} \mathrm{~d} t=\varphi(0)-\lim _{T \rightarrow \infty} \varphi(T)=\varphi(0)
$$

- For the right-hand side we have (by definition)

$$
\langle\delta(t), \varphi(t)\rangle=\varphi(0)
$$

- and we conclude once again that the two given distributions are equal
- The derivative of the Dirac distribution, denoted as $\delta^{\prime}(t)$, is defined as the distribution that assigns the value $-\varphi^{\prime}(0)$ to a testing function φ belonging to \mathscr{D} :

$$
\left\langle\delta^{\prime}(t), \varphi(t)\right\rangle=-\varphi^{\prime}(0)
$$

- Here, we use a prime to indicate a derivative (this is more or less standard notation)
- Perhaps you are wondering why the derivative of $\delta(t)$ is defined as above
- The reason is that we can now again manipulate with the Dirac distribution as if it is an ordinary function

$$
\begin{aligned}
\left\langle\delta^{\prime}(t), \varphi(t)\right\rangle & =\int_{t=-\infty}^{\infty} \frac{\mathrm{d} \delta(t)}{\mathrm{d} t} \varphi(t) \mathrm{d} t \\
& =\left.\lim _{T \rightarrow \infty} \delta(t) \varphi(t)\right|_{t=-T} ^{T}-\int_{t=-\infty}^{\infty} \delta(t) \frac{\mathrm{d} \varphi(t)}{\mathrm{d} t} \mathrm{~d} t=-\varphi^{\prime}(0)
\end{aligned}
$$

The Dirac distribution - derivative of the Dirac distribution

- The shifted derivative of the Dirac distribution is defined as

$$
\left\langle\delta^{\prime}\left(t-t_{0}\right), \varphi(t)\right\rangle=-\varphi^{\prime}\left(t_{0}\right)
$$

- Let f be a signal continuously differentiable at $t=0$
- We have

$$
f(t) \delta^{\prime}(t)=-f^{\prime}(0) \delta(t)+f(0) \delta^{\prime}(t)
$$

- We verify the above statement

The Dirac distribution - derivative of the Dirac distribution

- Left-hand side

$$
\begin{aligned}
\left\langle f(t) \delta^{\prime}(t), \varphi(t)\right\rangle & =\int_{t=-\infty}^{\infty}\left[f(t) \delta^{\prime}(t)\right] \varphi(t) \mathrm{d} t=\int_{t=-\infty}^{\infty} \delta^{\prime}(t)[f(t) \varphi(t)] \mathrm{d} t \\
& =\left.\lim _{T \rightarrow \infty} \delta(t) f(t) \varphi(t)\right|_{t=-T} ^{T}-\int_{t=-\infty}^{\infty} \delta(t) \frac{\mathrm{d}}{\mathrm{~d} t}[f(t) \varphi(t)] \mathrm{d} t \\
& =-\int_{t=-\infty}^{\infty} \delta(t)\left[f^{\prime}(t) \varphi(t)+f(t) \varphi^{\prime}(t)\right] \mathrm{d} t \\
& =-f^{\prime}(0) \varphi(0)-f(0) \varphi^{\prime}(0)
\end{aligned}
$$

The Dirac distribution - derivative of the Dirac distribution

- Right-hand side

$$
\begin{aligned}
\left\langle-f^{\prime}(0) \delta(t)+f(0) \delta^{\prime}(t), \varphi(t)\right\rangle & =-f^{\prime}(0)\langle\delta(t), \varphi(t)\rangle+f(0)\left\langle\delta^{\prime}(t), \varphi(t)\right\rangle \\
& =-f^{\prime}(0) \varphi(0)-f(0) \varphi^{\prime}(0)
\end{aligned}
$$

- Conclusion: the two distributions are equal

The Dirac distribution - summary

Summary: Properties of the Dirac distribution

$\int_{t=a}^{b} \delta\left(t-t_{0}\right) \mathrm{d} t= \begin{cases}1 & \text { if } t_{0} \in(a, b) \\ 0 & \text { if } t_{0} \notin(a, b)\end{cases}$	integration property
$f(t) \delta\left(t-t_{0}\right)=f\left(t_{0}\right) \delta\left(t-t_{0}\right)$	$f(t)$ continuous at $t=t_{0}$
$\delta(a t)=\frac{1}{\|a\|} \delta(t)$	$a \in \mathbb{R} \backslash\{0\}$, scaling property
$\frac{\mathrm{d} u}{\mathrm{~d} t}=\delta(t)$	derivative of the unit step function
$f(t) \delta^{\prime}(t)=-f^{\prime}(0) \delta(t)+f(0) \delta^{\prime}(t)$	$f(t)$ continuously differentiable at $t=0$

The Dirac distribution - exercises

Exercise 1.1 Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{sign}(t)=2 \delta(t)
$$

Exercise 1.2 Show that

$$
\delta(a t+b)=\frac{1}{|a|} \delta(t+b / a) \quad a \neq 0
$$

Exercise 1.3 Determine

$$
\int_{\tau=-\infty}^{t} \delta(\tau) \mathrm{d} \tau
$$

Answer: $u(t)$

- The Dirac distribution - exercises

Exercise 1.4 Determine

$$
\int_{\tau=-\infty}^{t} \delta(\tau) f(\tau) \mathrm{d} \tau
$$

Answer: $f(0) u(t)$

Exercise 1.5 Compute

$$
\int_{t=-\infty}^{\infty} \delta(t) f\left(t-t_{0}\right) \mathrm{d} t
$$

Answer: $f\left(-t_{0}\right)$
Exercise 1.6 Compute

$$
\int_{t=-\infty}^{\infty} \delta(t) t \mathrm{~d} t
$$

Answer: 0

Exercise 1.7 Sketch the signal

$$
f(t)=\sin (\pi t) u(t)
$$

and compute $f^{\prime}(t)$.

Exercise 1.8 Sketch the signal

$$
g(t)=\cos (\pi t) u(t)
$$

and compute $g^{\prime}(t)$.
Exercise 1.9 Compute $p^{\prime}(t)$, where $p(t)$ is the rectangular pulse function. Sketch $p(t)$ and $p^{\prime}(t)$.

Exercise 1.10 Compute $\Lambda^{\prime}(t)$, where $\Lambda(t)$ is the triangular pulse function. Sketch $\Lambda(t)$ and $\Lambda^{\prime}(t)$.

The Dirac distribution - exercises

Exercise 1.11 Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|t|=\operatorname{sign}(t)
$$

Exercise 1.12 Plot the signal

$$
f(t)=\operatorname{sign}(t)-\operatorname{sign}(t-1)
$$

Exercise 1.13 Show that

$$
t \delta^{\prime}(t)=-\delta(t)
$$

Exercise 1.14 Explain why

$$
\int_{t=-\infty}^{\infty} \delta^{\prime}(t) \mathrm{d} t=0
$$

