EE2S11: Signals and Systems

18. Solutions to the trial exam part 2 of 14 January 2016

Question 1

We are given the signals

$$
x[n]=\left\{\begin{array}{ll}
1, & 0 \leq n \leq 5, \\
0, & \text { elsewhere }
\end{array} \quad h[n]=[\cdots, 0,1,-2,1,0, \cdots]\right.
$$

a) Determine $y[n]=x[n] * h[n]$ using the convolution sum in time domain.

Answer

Compute $y[n]=x[n] * h[n]=\sum_{k=0}^{\infty} h[k] x[n-k]$:

$h[0] \times[n]:$	1	1	1	1	1	1	0	0	0	\cdots
$h[1] \times[n-1]:$	0	-2	-2	-2	-2	-2	-2	0	0	\cdots
$h[2] \times[n-2]:$	0	0	1	1	1	1	1	1	0	\cdots
$y[n]:$	1	-1	0	0	0	0	-1	1	0	\cdots

Question 1

b) Determine the z-transformaties $X(z)$ and $H(z)$, also specify the regions of convergence (ROCs).
c) Determine $y[n]=x[n] * h[n]$ using the (inverse) z-transform.

Answer

$$
\begin{array}{rlr}
X(z) & =1+z^{-1}+\cdots+z^{-5} \\
& =\frac{1-z^{-6}}{1-z^{-1}} & \quad \mathrm{ROC}: z \neq 0 \\
& =\left(1-z^{-1}\right)^{2} \quad & \\
& =1-2 z^{-1}+z^{-2} \\
& \quad \mathrm{ROC}: z \neq 0 \\
Y(z)= & H(z) X(z) & =\left(1-z^{-1}\right)^{2} \frac{1-z^{-6}}{1-z^{-1}} \\
& =\left(1-z^{-1}\right)\left(1-z^{-6}\right) \\
& =1-z^{-1}-z^{-6}+z^{-7}
\end{array}
$$

$y[n]=\delta[n]-\delta[n-1]-\delta[n-6]+\delta[n-7]$, same result as for item a).

Question 1

d) Given

$$
X(z)=\frac{1}{1-1 \frac{1}{2} z^{-1}+\frac{1}{2} z^{-2}}, \quad z \in \mathrm{ROC}
$$

determine $x[n]$ using the inverse z-transform if (d1) ROC: $|z|>1$, (d2) ROC: $|z|<\frac{1}{2}$, (d3) ROC: $\frac{1}{2}<|z|<1$.

Answer

First write this in terms of z^{-1} (already done), make it 'proper' (already done), then split (partial fraction expansion).

$$
X(z)=\frac{1}{1-1 \frac{1}{2} z^{-1}+\frac{1}{2} z^{-2}}=\frac{2}{1-z^{-1}}-\frac{1}{1-\frac{1}{2} z^{-1}}
$$

Question 1

di) The region of convergence runs until $z \rightarrow \infty$: causal response. Hence

$$
x[n]=2 u[n]-\left(\frac{1}{2}\right)^{n} u[n]
$$

d2) The region of convergence includes $z=0$: anti-causal repose. Rewrite $X(z)$ as

$$
X(z)=-\frac{2 z}{1-z}+\frac{2 z}{1-2 z} .
$$

The inverse z-transform of $\frac{1}{1-z}$ is $u[-n]$ and of $\frac{1}{1-2 z}$ is $2^{-n} u[-n]$, while multiplication with z is equivalent to an 'advance', so that

$$
x[n]=-2 u[-n-1]+2 \cdot 2^{-n-1} u[-n-1]
$$

Question 1

d3) Rewrite $X(z)$ as

$$
X(z)=-\frac{2 z}{1-z}-\frac{1}{1-\frac{1}{2} z^{-1}} .
$$

For this ROC, the first term results in an anti-causal response (pole at the outside of the ROC), while the second term results in a causal response (pole at the inside of the ROC). Hence,

$$
x[n]=-2 u[-n-1]-\left(\frac{1}{2}\right)^{n} u[n]
$$

Question 1

e) Given $x[n]=(-1)^{n} u[n]$, determine the DTFT $X(\omega)$.

Answer

The z-transform is

$$
X(z)=\frac{1}{1+z^{-1}}, \quad \text { ROC: }|z|>1
$$

The resulting DTFT is (continuation of $X(z)$ until the unit circle except for $z=-1$)

$$
X\left(e^{j \omega}\right)=\frac{1}{1+e^{-j \omega}}, \quad \omega \neq \cdots,-\pi, \pi, 3 \pi \cdots
$$

At the frequencies $\pm \pi+2 \pi k$ we obtain delta spikes. To determine these, use the following derivation:

Question 1

For $y[n]=u[n]$ we have seen that $Y(\omega)=\frac{1}{1-e^{-j \omega}}+\pi \sum_{k} \delta(\omega-2 \pi k)$.

We also saw that for a modulation:

$$
(-1)^{n} y[n] \quad \leftrightarrow \quad \frac{1}{2}[Y(\omega-\pi)+Y(\omega+\pi)]=Y(\omega-\pi)
$$

(due to periodicity of the spectrum with period 2π, both shifts exactly coincide).

Together, we obtain

$$
X(\omega)=\frac{1}{1-e^{-j(\omega-\pi)}}+\pi \sum_{k} \delta(\omega-\pi-2 \pi k)=\frac{1}{1+e^{-j \omega}}+\pi \sum_{k} \delta(\omega-\pi-2 \pi k)
$$

Question 1

f) Given $X(\omega)=\cos (\omega)$, determine $x[n]$.

Answer

$$
X(\omega)=\frac{1}{2} e^{j \omega}+\frac{1}{2} e^{-j \omega} \quad \rightarrow \quad x[n]=\frac{1}{2} \delta[n+1]+\frac{1}{2} \delta[n-1]
$$

Question 2

The transfer function of a causal LTI system is given by

$$
H(z)=\frac{z+1}{(z+1)^{2}+1}, \quad z \in \operatorname{ROC}
$$

a) Determine all poles and zeros of the system, and make a drawing of the complex z-plane.
b) Specify the ROC.

Answer

Zeros for $z=-1$ and $z=\infty$.
Poles for $z=-1 \pm j$.
Because the system was specified as being causal, the ROC is the outside of a circle, resulting in $|z|>\sqrt{2}$.

Question 2

c) Is the system BIBO stable? (Why?)
d) Determine the frequency response of the system.
e) Determine the impulse response $h[n]$.

Answer

Not BIBO stable because $|z|=1$ is not in the ROC.
The frequency response does not exist because $|z|=1$ is not in the ROC.
Otherwise, we would obtain

$$
\begin{gathered}
H\left(e^{j \omega}\right)=\frac{e^{j \omega}+1}{\left(e^{j \omega}+1\right)^{2}+1} \\
H(z)=\frac{1 / 2}{z+1+j}+\frac{1 / 2}{z+1-j}=\frac{1 / 2 z^{-1}}{1+(1+j) z^{-1}}+\frac{1 / 2 z^{-1}}{1+(1-j) z^{-1}} \\
h[n]=\frac{1}{2}(-1-j)^{n-1} u[n-1]+\frac{1}{2}(-1+j)^{n-1} u[n-1] \\
=\frac{1}{2}(\sqrt{2})^{n-1}\left(e^{j(3 \pi / 4)(n-1)}+e^{-j(3 \pi / 4)(n-1)}\right) u[n-1] \\
=(\sqrt{2})^{n-1} \cos \left(\frac{3 \pi}{4}(n-1)\right) u[n-1] \quad \text { unstable... }
\end{gathered}
$$

Question 3

We are given the following system:

a) Determine the system transfer function $H(z)$.
b) Is this a stable system? (Why?)
c) Is this a minimal realization? (Why?)
d) Make a drawing of the "direct form no. II" realization, also specify the coefficients.

Question 3

Answer

a) Introduce additional parameters: here not really necessary, because the output of each delay is a simple function of x or y :

Hence

$$
\begin{aligned}
Y(z) & =z^{-2} X(z)+3\left(z^{-1} X(z)-z^{-1} Y(z)+2\left(z^{-2} Y(z)-X(z)\right)\right) \\
& =\left(z^{-2} X(z)+3 z^{-1} X(z)-6 X(z)\right)-3 z^{-1} Y(z)+6 z^{-2} Y(z) \\
Y(z)\left(1+3 z^{-1}-6 z^{-2}\right) & =X(z)\left(z^{-2}+3 z^{-1}-6\right) \\
H(z)=\frac{Y(z)}{X(z)} & =\frac{z^{-2}+3 z^{-1}-6}{1+3 z^{-1}-6 z^{-2}}
\end{aligned}
$$

Question 3

b) Determine the poles:

$$
z^{2}+3 z-6=0 \quad \rightarrow \quad z_{1,2}=-\frac{3}{2} \pm \frac{1}{2} \sqrt{9+24}=\{-4.37,1,37\}
$$

The poles are outside the unit circle (and the realization is causal): unstable
c) Not minimal: 4 delays used for a 2 nd order system
d)

Question 4

A continuous-time signal $x_{a}(t)$ has a spectrum as indicated below. $x_{a}(t)$ is sampled at a frequency $1 / T$ equal to the Nyquist rate, filtered by an ideal low-pass filter $H(\omega)$, and converted back into an analog signal $y_{a}(t)$. The cut-off frequency of $H(\omega)$ is $\omega_{c}=\Omega_{m} T / 3$.

a) Give an expression for T.

Answer

a) $T=\frac{1}{2 F_{m}}=\frac{2 \pi}{2 \Omega_{m}}=\frac{\pi}{\Omega_{m}}$.

Question 4

b) Draw the spectrum corresponding to $x[n]$. Also indicate the freqencies.
c) Draw the spectrum corresponding to $y[n]$. Also indicate the freqencies.
d) Draw the spectrum corresponding to $y_{a}(t)$. Also indicate the freqencies.

Answer

Question 5

We would like to design a digital low-pass filter with the following specifications:

- Pass-band ripple: $\leq 1 \mathrm{~dB}$
- Pass-band: 4 kHz
- Stop-band damping: $\geq 40 \mathrm{~dB}$
- Stop-band: from 6.0 kHz
- Sample rate: 24 kHz

The digital filter is designed by applying a bilinear transform to an analog transfer function.
a) What are the pass-band and stop-band frequencies in the digital time-domain?
b) What are the filter specifications in the analog time-domain?

Question 5

Answer

a)

$$
\begin{aligned}
& f_{p}=\frac{4}{24}=\frac{1}{6} \Rightarrow \omega_{p}=\frac{2 \pi}{6}=\frac{\pi}{3} \\
& f_{s}=\frac{6}{24}=\frac{1}{4} \Rightarrow \omega_{s}=\frac{2 \pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

b) Apply the bilinear transform: $\omega=2 \arctan (\Omega), \Omega=\tan \left(\frac{\omega}{2}\right)$:

$$
\begin{gathered}
\Omega_{p}=\tan \left(\frac{\omega_{p}}{2}\right)=0.5774 \\
\Omega_{s}=\tan \left(\frac{\omega_{s}}{2}\right)=1
\end{gathered}
$$

For the ripples: $\delta_{p}=10^{-1 / 20}=0.8913, \delta_{s}=10^{-40 / 20}=0.01$.

Question 5

c) Compute the required filter order for a Butterworth filter
d) Compute the required filter order for a Chebyshev filter
(Remark: $\left.\cosh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right).\right)$

Answer

c) Use the derivation shown in the book or on the slides.

Butterworth: $|H(\omega)|^{2}=\frac{1}{1+\epsilon^{2}\left(\Omega / \Omega_{p}\right)^{2 N}}$.
For the pass-band, we find $\frac{1}{1+\epsilon^{2}}=\delta_{p}^{2} \Rightarrow \epsilon=\sqrt{\frac{1}{0.7943}-1}=0.5089$
For the stop-band, we have: $\delta_{s}=10^{-40 / 20}=0.01$.
For the filter order:
$\left|H\left(\Omega_{s}\right)\right|^{2}=\frac{1}{1+\epsilon^{2}\left(\Omega_{s} / \Omega_{p}\right)^{2 N}}=\delta_{s}^{2} \quad \Rightarrow \quad\left(\frac{\Omega_{s}}{\Omega_{p}}\right)^{2 N}=\frac{\frac{1}{\delta_{s}^{2}}-1}{\epsilon^{2}}=: \frac{\delta^{2}}{\epsilon^{2}} \quad \Rightarrow \quad N \geq \frac{\log (\delta / \epsilon)}{\log \left(\Omega_{s} / \Omega_{p}\right)}$
Substitution gives $\delta=99.995$ and $N \geq 9.618$, i.e., the filter order is $N \geq 10$.

Question 5

d) Similar derivation for Chebyshev results in

$$
N \geq \frac{\cosh ^{-1}(\delta / \epsilon)}{\cosh ^{-1}\left(\Omega_{s} / \Omega_{p}\right)}=5.212
$$

Hence a 6th order filter.

Question 5

e) Make a drawing of the transfer function of the resulting two digital filters after the bilinear transform. Also mark the filter specificaties in the figure.

Answer

