
ee2s11 Signals and Systems

Exercises analog/digital filter design

1. Question

We use the bilinear transform to design a digital low-pass filter H(z), specified as follows:

Pass-band: 0 ≤ |ω| ≤ 0.3π, maximal ripple 1 dB

Stop-band: 0.35π ≤ |ω| ≤ π, minimal damping 60 dB

a Translate these specifications to the analog frequency domain

b What is the required filter order if we use a Butterworth filter?

Answer

a The bilinear transform leidt tot Ω = tan( ω
2 ). Here

Ωp = tan(0.3π/2) = 0.5095, Ωs = tan(0.35π/2) = 0.6128

b The expression for a Butterworth filter is

|H(Ω)|2 =
1

1 + ε2(Ω/Ωp)2N

Hence

Pass-band ripple:
1

1 + ε2
= 10−1/10 ⇒ ε = 0.5088

Stop-band damping:
1

1 + ε2(Ωs/Ωp)2N
≤ δ2

s = 10−60/10 = 10−6

Define δ :=
√

1
δ2
s

− 1 = 999.9 and simplify:

N ≥ log(δ/ε)

log(Ωs/Ωp)
= 41.07

This gives N = 42.

2. Question

Design a first-order digital low-pass filter H(z) with the following specifications:

Pass-band frequency: ωp = 0.3π ,

Damping outside the pass-band: at least 10 dB

Use the bilinear transform en base your design on an analog Butterworth filter.

a What is the pass-band frequency in the analog frequency domain?

b What is the generic expression for a first-order analog Butterworth filter?

c What is the analog filter Ha(s) meeting the specifications?

d What is H(z)

e Demonstrate (verify) that the design meets the specifications.
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Answer

a Ωp = tan(ωp/2) = 0.5095. You could also use (like in Chaparro) Ωp = 2
T tan(ωp/2), giving

the same result.

b |H(ω)|2 =
1

1 + ε2(Ω/Ωp)2

Hence H(s)H(−s) =
1

1 − ε2(s/Ωp)2
and H(s) =

1

1 + εs/Ωp

c First determine ε from the damping requirement at ωp = 0.3π. From |H(ω = 0.3π)|2 =

10−10/10 = 0.1 (damping 10 dB) we obtain

1

1 + ε2
= 0.1 ⇒ ε = 3

Hence H(s) =
1

1 + ε/Ωp · s
=

1

1 + 5.88 · s

d Use the bilinear transform:

s → 1 − z−1

1 + z−1

This results in

H(z) =
1

1 + 5.88 1−z−1

1+z−1

=
1

6.88
· 1 + z−1

1 − 0.7096 · z−1

e Verify:

|H(ω = 0)| = |H(z−1 = 1)| = 1

|H(ω = π)| = |H(z−1 = −1)| = 0

|H(ω = 0.3π)|2 = |H(z−1 = 0.59 − j0.81)|2 = 1
(6.88)2

(1+0.59)2+(0.81)2

(1−0.7096·0.59)2+(0.7096·0.81)2 = · · · = 0.1

3. Question

A generic second-order analog low-pass filter (Butterworth filter) is given by

Ha(s) =
1

s2 +
√

2s + 1

The 3-dB cutoff frequency is Ωc = 1.

Design using the bilinear transform a digital high-pass filter H(z) with cut-off frequency ω ′
c = 3

4π:

a What is the cut-off frequency in the analog frequency domain?

b Which frequency transform do you apply?

c What is Ha(s)

d What is H(z)

e Verify that the design meets the specififations.
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Answer

Cut-off frequency: Ω′
c = tan(ω′

c/2) = 2.4142

Frequency transform:

s → ΩcΩ
′
c

s

Here: s → 2.4142
s .

The resulting analog high-pass filter is

Ha(s) =
1

(2.4142
s )2 +

√
22.4142

s + 1
=

s2

s2 + 3.4142s + 5.8284

The corresponding digital transfer function follows from the bilinear transform:

s → 1 − z−1

1 + z−1

This results in

H(z) =
(1−z−1

1+z−1 )2

(1−z−1

1+z−1 )2 + 3.4142( 1−z−1

1+z−1 ) + 5.8284
= · · · =

z2 − 2z + 1

10.2436z2 + 9.6568z + 3.4142

Verify:

H(ω = 0) = H(z = 1) = 0

H(ω = π) = H(z = −1) = 1

H(ω = ωc) = H(z = ejωc) = 0.0133 + j0.7068 ⇒ |H(ωc)| = 0.7071 = 1√
2

Indeed, a high-ass filter with 3 dB damping at ωc.

4. Question

Design a 2nd order high-pass Chebychev filter with a stop-band frequency of 1 rad/s, a pass-band

frequency of 2 rad/s and a maximal damping in the pass-band of 1 dB.

a Which frequency transform do you use?

b What is the frequency response (squared-amplitude) of the corresponding low-pass filter

with a pass-band frequency of 1 rad/s.

c What is the stop-band frequency and the maximal damping in the stop-band of the low-

pass filter?

d Now apply the frequency transform to convert the low-pass filter into the requested high-

pass filter, en give the frequency response (squared-amplitude) van the resulting high-pass

filter.

e Make a drawing of this frequency response (squqred-amplitude) en indicate the stop-band

and pass-band frequencies, and the corresponding damping.
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Answer

a We use the low-pass to high-pass transform:

Ω =
2

Ω′

Hence, we need to design a low-pass filter with Ωp = 1 and then apply the transform.

b The frequency response for a 2nd order Chebychev with Ωp = 1 is given by:

|H(jΩ)|2 =
1

1 + ε2(2Ω2 − 1)2
.

We determine ε based on the maximal damping in the pass-band of 1 dB:

αp = 10 log(1 + ε2) = 1 dB

⇒ ε =
√

10αp/10 − 1 = 0.5

Hence

|H(jΩ)|2 =
1

1 + 0.25(2Ω2 − 1)2
.

c The stop-band frequency is:

Ω′
s = 1 rad/s (for high-pass) ⇒ Ωs =

2

Ω′
s

= 2 rad/s (for low-pass )

The minimal damping in the stop-band is

αs = 10 log(1 + ε2(2Ω2
s − 1)2) ≈ 11dB

The maximal damping in the stop-band is ∞.

d The frequency response of the high-pass filter is then given by

|H(jΩ′)|2 =
1

1 + 0.25(2(2/Ω′)2 − 1)2
.

e See figure below:

1

0.8

21

0.075

amplitude−kwadraat

frequentie (rad/s)
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5. Question

Design an analog 2nd order high-pass Butterworth filter with stop-band frequency 40 Hz, pass-

band frequency 60 Hz, and maximal damping in the pass-band 3 dB.

a Which frequency transform do you use?

b Give an expression for the frequency response (squared-amplitude) of the corresponding

low-pass filter with a pass-band frequency of 1 rad/s.

c What is the stop-band frequency and the minimal damping in the stop-band of this low-

pass filter?

d Now use the frequency transform to convert the low-pass filter into the requested high-pass

filter, and give the expression for the frequency response (squared-amplitude) of the final

high-pass filter.

e Make a drawing of this frequency response (squared-amplitude); indicate the stop-band

and pass-band frequencies, and the corresponding damping.

Answer

a Ω =
60 · 2π

Ω′ =
377

Ω′ .

This is a mapping of Ω′ = 60 · 2π rad to Ω = 1 rad, and of Ω′ = 40 · 2π rad to Ω = 3/2

rad. We have to design a low-pass filter with a pass-band frequency of Ωp = 1 rad and a

stop-band frequency of Ωs = 3/2 rad.

b Second order Butterworth is given by

|H(Ω)|2 =
1

1 + ε2Ω4

For Ω = 1 the response should be -3 dB (factor 1/2 in power):

|H(1)|2 =
1

1 + ε2
=

1

2
⇒ ε = 1

Hence

|H(Ω)|2 =
1

1 + Ω4

c The stop-band frequency is Ωs = 3/2. The corresponding damping is

|H(Ωs)|2 =
1

1 + Ω4
s

= 0.165 = −7.8 dB

d

|H(Ω)|2 =
1

1 + (60 · 2π/Ω)4

or, with F in Hz:

|H(F )|2 =
1

1 + (60/F )4
=

F 4

F 4 + 604

e
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Verify that the resulting filter satisfies the specs!

6. Question

We design an analog 2nd order high-pass Chebychev filter with a stop-band frequency of 3 rad/s,

a pass-band frequency of 6 rad/s, and a maximal damping in the pass-band of 3 dB.

a First, we design a low-pass filter and then apply a frequency transform. Which frequency

transform will you use? What are the resulting specifications for the low-pass filter?

b Give an explicit expression for the second-order Chebychev polynomial T2(Ω). Make a

drawing of this function.

c Give the expression for the frequency response (squared-amplitude) of the corresponding

2nd order Chebychev low-pass filter with a pass-band frequency of 1 rad/s and a maximal

damping in the pass-band of 3 dB. Determine all unknown parameters.

d What is the minimal damping in the stop-band of the resulting low-pass filter?

e Now apply the frequency transform to convert the low-pass filter into the requested high-

pass filter, and give the expression for the frequency response (squared-amplitude) of the

resulting high-pass filter.

f Make a drawing of this frequency response (squared-amplitude); also indicate the stop-

band and pass-band frequencies, and the corresponding dampings.

Answer

a Ω → 6
Ω .

The pass-band frequency is Ωp = 1 rad/s, with a damping of 3 dB. The stop-band frequency

is Ωs = 6
3 = 2.0 rad/s.

Other transforms are also possible, but this version is convenient because the pass-band

frequency is now equal to 1.
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b T2(Ω) = 2Ω2 − 1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

Ω
T

2(Ω
)

c

|G(Ω)|2 =
1

1 + ε2[T2(Ω)]2
=

1

1 + ε2(2Ω2 − 1)2

For Ω = 1, we must have a damping of 3 dB, hence |G(1)|2 = 1
2 .

|G(1)|2 =
1

1 + ε2
=

1

2
⇒ ε = 1

|G(Ω)|2 =
1

1 + (2Ω2 − 1)2
=

1

4Ω2 − 4Ω2 + 2

d

|G(Ωp)|2 =
1

1 + (2(2.0)2 − 1)2
=

1

50

This corresponds to −17 dB.

e
|H(Ω)|2 = 1

1+(2( 6

Ω
)
2
−1)2

= 1
1+( 72

Ω2
−1)2

= Ω4

2Ω4−2·72Ω2+(72)2

f
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The peak corresponds to the location where T2(6/Ω) = 0, i.e., for Ω = 6
√

2 ≈ 8.5. The

shape of T2(Ω) in item b indicates that there is only a single peak. For Ω → ∞ is

T2(6/Ω) = T2(0) = −1, the transfer function is H(Ω) = 1/(1 + ε2) = 1/2, the same value

as for Ωp. (A higher-order filter would show a number of wiggles between 1/2 and 1.)
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7. Question

We would like to design an analog low-pass filter with the following specifications:

– Pass-band: until Fp = 40 Hz; ripple in the pass-band : ≤ 1 dB

– Stop-band: from Fs = 50 Hz; stop-band damping: ≥ 30 dB.

In class, we studied the “Chebyshev I” function, specified by

|HI(Ω)|2 =
1

1 + ε2T 2
N (Ω/Ωc)

where TN (x) is the Chebyshev polynomial of order N . This results in a filter with an equiripple

in the pass-band. Alternatively, we here consider the “Chebyshev II” function, obtained in two

steps:

First we apply a low-pass to high-pass transform, Ω → Ω2
c/Ω:

|HC(Ω)|2 =
1

1 + ε2T 2
N (Ωc/Ω)

Next, we take the complement of this function,

|HII(Ω)|2 = 1 − |HC(Ω)|2 =
ε2T 2

N (Ωc/Ω)

1 + ε2T 2
N (Ωc/Ω)

a Make neat drawings of |HI(Ω)|2 and |HC(Ω)|2, and of |HII(Ω)|2. Indicate Ωc, and the

locations of the pass-band frequency, stop-band frequency, maximal pass-band ripple δp,

maximal stop-band ripple δs. Clearly show the ripples.

b What is |HI(Ωc)|2? How do you choose Ωc?

c Compute step-by-step the required filter order N for HI(Ω) which will meet the given

specifications.

(Remark: cosh−1(x) = ln(x +
√

x2 − 1).)

d What is |HII(Ωc)|2? How do you choose Ωc?

e Now compute the required filter order N for HII(Ω).

f Are there advantages in using HII(Ω) instead of HI(Ω)?

Answer

a The transform maps low frequencies to high, and high frequencies to low. The frequency-

axis is mirrored (around Ωc).

Ωc

|HI(Ω)|
1

δp

δs

0

Ωp Ωs

Ω

Ωc

|HII (Ω)|
1

δp

δs

0 Ω

|HC(Ω)|
1

δp

δs

0 Ω

Ω′

pΩ′

s Ω′′

s

Ωc

Ω′′

p
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b Substitute (using T 2
N (1) = 1):

|HI(Ωc)|2 =
1

1 + ε2

Choose Ωc = Ωp = 2π · 40.
(Note: Ωc is not a cut-off frequency.)

c The pass-band criterion results in:

|HI(Ωp)|2 =
1

1 + ε2
= δ2

p = 10−1/10

ε = (δ−2
p − 1)1/2 = (101/10 − 1)1/2 = 0.5088

The stop-band criterion results in:

|HI(Ωs)|2 =
1

1 + ε2T 2
N (Ωs/Ωc)

= δ2
s = 10−30/10

TN (Ωs/Ωp) =
(δ−2

s − 1)1/2

ε
=

(1030/10 − 1)1/2

0.5088
= 62.1206

Use the equation TN (x) = cosh(N cosh−1(x)) (valid for |x| > 1):

cosh(N cosh−1(Ωs/Ωp)) = 62.1206 ⇒ N =
cosh−1(62.1206)

cosh−1(50/40)
= 6.96

Round N upwards, resulting in N = 7.

d

|HII(Ωc)|2 =
ε2

1 + ε2

Choose Ωc = Ωs = 2π · 50.
This choice is because for Ω > Ωs, the equation has TN (x) with x = Ωs/Ω < 1, i.e.,

|TN (Ωs/Ω)| < 1: at this point the ripples will start.

e Stop-band criterion results in:

|HI(Ωs)|2 =
ε2

1 + ε2
= δ2

s = 10−30/10

ε2 = (1 + ε2)δ2
s

ε2 =
δ2
s

1 − δ2
s

ε = (
δ2
s

1 − δ2
s

)1/2 = (
10−30/10

1 − 10−30/10
)1/2 = 0.0316

The pass-band criterion results in:

|HII(Ωp)|2 =
ε2T 2

N (Ωs/Ωp)

1 + ε2T 2
N (Ωs/Ωp)

= δ2
p = 10−1/10

TN (Ωs/Ωp) =
1

ε

(

δ2
p

1 − δ2
p

)1/2

=
1

0.0316

(

10−1/10

1 − 10−1/10

)1/2

= 62.19

cosh(N cosh−1(Ωs/Ωp)) = 62.19 ⇒ N =
cosh−1(62.19)

cosh−1(50/40)
= 6.96

We take N = 7.

f The filter order turns out to be the same. An advantage is that the pass-band is flat, so

that the output signal is less distorted.
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8. Question

We would like to design a digital high-pass filter with the following specifications:

– Pass-band: starting at 3.0 kHz; ripple in the pass-band : ≤ 1 dB

– Stop-band: below 2.0 kHz; stop-band damping: ≥ 40 dB

– Sample rate: 12 kHz

The digital filter is designed by means of a bilinear transform applied to an analog transfer

function.

a What are the pass-band and stop-band frequencies in the digital time-domain?

b What are the filter specifications in the analog time-domain?

c Which transform are you going to use to convert to a low-pass filter? What are the specs

for this filter?

d Compute the required filter order N for a Butterworth filter.

e Suppose that the resulting Butterworth filter is of the form

H(s) =
1

D(s)
, D(s) = d0 + d1s + · · · + dNsN

with poles s1, · · · , sN . How do you obtain the filter coefficienten for the digital high-pass

filter?

Answer
a

ωp =
3

12
2π =

1

2
π , ωs =

2

12
2π =

1

3
π

b

Ωp = tan(
ωp

2
) = 1 , Ωs = tan(

ωp

2
) = .5774

c

s → 1

s
, Ω → 1

Ω

(Other options exist: more generally s → Ω0

s , but this should be taken into account later

in step e.)

Specs for the low-pass filter:

• Ω′
p = 1, ripple in the pass-band smaller than 1 dB

• Ω′
s = 1/0.5774 = 1.7321, damping in the stop-band larger than 40 dB

d For Butterworth:

|H(Ω)|2 =
1

1 + ε2(Ω/Ω′
p)

2N

Pass-band:
1

1 + ε2
= δ2

p = (10−1/20)2 ⇒ ε = 0.5087
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Stop-band:

1

1 + ε2(Ω′
s/Ω

′
p)

2N
= δ2

s = (10−40/20)2 = 10−4 ⇒ (Ω′
s/Ω

′
p)

2N =
104 − 1

ε2

Hence

N =
log(9999/(0.5087)2)

log((1.7321)2)
= 9.6135

Round upwards: N = 10.

e First back to a high-pass filter: s → 1
s , resulting in

HHP (s) =
1

D(1
s )

=
sN

d0sN + · · · + dN

Then apply the bilinear transform s = 1−z−1

1+z−1 , resulting in

HHP (z) =
(1 − z−1)N

d0(1 − z−1)N + d1(1 − z−1)N−1(1 + z−1) + · · · + dN (1 + z−1)N

The coefficients are found by expanding the numerator and denominator as polynomials

in z−1.

9. Question

We would like to design a digital low-pass filter with the following specifications:

– Ripple in the pass-band : ≤ 1 dB

– Pass-band: until 4 kHz

– Stop-band damping: ≥ 40 dB

– Stop-band: starting at 6 kHz

– Sample rate: 24 kHz

The digital filter is designed using a bilinear transform applied to an analog transfer function.

a What are the pass-band and stop-band frequencise in digital time-domain?

b What are the filter specifications in analog time-domain?

c Compute the required filter order for a Butterworth filter

d Compute the required filter order for a Chebyshev filter

(Remark: cosh−1(x) = ln(x +
√

x2 − 1).)

e Make a drawing of the transfer function of the resulting two digital filters after the bilinear

transform. Also mark the filter specifications in the figure.

Answer
a

fp =
4

24
=

1

6
⇒ ωp =

2π

6
=

π

3

fs =
6

24
=

1

4
⇒ ωs =

2π

4
=

π

2
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b Apply the bilinear transform: ω = 2arctan(Ω) , Ω = tan( ω
2 ):

Ωp = tan(
ωp

2
) = 0.5774

Ωs = tan(
ωs

2
) = 1

For the ripples: δp = 10−1/20 = 0.8913, δs = 10−40/20 = 0.01.

c Use the derivation shown in the book or on the slides.

Butterworth: |H(ω)|2 =
1

1 + ε2(Ω/Ωp)2N
.

For the pass-band, we find
1

1 + ε2
= δ2

p ⇒ ε =

√

1

0.7943
− 1 = 0.5089

For the stop-band, we have: δs = 10−40/20 = 0.01.

For the filter order:

|H(Ωs)|2 =
1

1 + ε2(Ωs/Ωp)2N
= δ2

s ⇒ (
Ωs

Ωp
)2N =

1
δ2
s

− 1

ε2
=:

δ2

ε2
⇒ N ≥ log(δ/ε)

log(Ωs/Ωp)

Substitution gives δ = 99.995 and N ≥ 9.618, i.e., the filter order is N ≥ 10.

d Similar derivation for Chebyshev results in

N ≥ cosh−1(δ/ε)

cosh−1(Ωs/Ωp)
= 5.212

Hence a 6th order filter

e

ω

|H(ω)|

1
δp

δs

π0

ωp ωs

2π

ω

|H(ω)|

1
δp

δs

π0

ωp ωs

2π
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10. Question

We design a digital 2nd order band-stop filter (notch filter) with notch frequency ω0 = π/2, and

3 dB bandwidth of the notch b = π/3. I.e., if ω1 and ω2 are the -3 dB cut-off frequencies to the

left and right of the notch frequency, then b = ω2 − ω1.

We use the bilinear transform. A template for an analog 2nd order notch filter is

Ha(s) =
s2 + Ω2

0

s2 + Bs + Ω2
0

In here, Ω0 is the notch frequency, and B = Ω2 − Ω1 is the 3 dB bandwidth, where Ω1 and Ω2

are the cut-off frequencies. We also have Ω1Ω2 = Ω2
0.

a What is Ha(0), Ha(jΩ0), Ha(j · ∞)? Make a drawing of |Ha(jΩ)|.
b How are ω and Ω related, according to the bilinear transform? What is the Ω0 which

corresponds to ω0 = π/2?

We can easily show that if ω1 =
π

2
− b

2
and ω2 =

π

2
+

b

2
, then after the bilinear transform we

have Ω1Ω2 = 1.

c Based on this, select suitable values for ω1 and ω2, and determine the value of B.

Determine Ha(s) which meets the analog specifications.

d Determine the digital filter H(z) which meets the specifications.

e Compute the poles and zeros of H(z) and show a pole/zero diagram.

Is this according to your expectations?

Answer

a Ha(0) = 1; Ha(jΩ0) = 0; Ha(∞) = 1.

0 1 2 3 4 5
0

0.5

1

Ω

|H
a
(Ω)|

Ω2Ω1

Ω0 = 1
B = 1.1547

1

2

√
2

b Ω = tan(ω
2 ). Hence Ω0 = 1.

c ω1 = π
2 − π

6 = π
3 . ω2 = π

2 + π
6 = 2

3π.

Ω1 = 1
3

√
3 = 0.5744. Ω2 =

√
3 = 1.7321.

B = Ω2 − Ω1 = 2
3

√
3 = 1.1547.

Ha(s) =
s2 + 1

s2 + (1.1547)s + 1
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d Substitute s = 1−z−1

1+z−1 . This results in

H(z) =
(1 − z−1)2 + (1 + z−1)2

(1 − z−1)2 + B
2 (1 − z−1)(1 + z−1) + (1 + z−1)2

=
1 + z−2

(1 + B
2 ) + (1 − B

2 )z−2

Hence

H(z) =
1 + z−2

1.5744 + (0.4256)z−2

e Poles: z = ±j(0.5199); zeros z = ±j.

0.52

1

z-planej

−1

We see zeros at the desired notch frequency (ω = ±π/2), and poles which, at some distance,

will cancel these zeros. In this example, the poles are not very close to the zeros, hence

the bandwidth of the notch is rather large (as is also evident from the specifications).
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