EE2S11: Signals and Systems

17. Exercises for part 2 (second part)
18. Convolution
19. Realizations
20. Filter design (analog, digital)

Exercises

Convolution

Given a signal $x[n]$ with samples $x=[\cdots, 0,0,1,2,3,2,1,0,0, \cdots]$ (the square indicates $x[0]$), and a filter $h[n]$ with impulse response $h=[\cdots, 0,0,1,1,0,0, \cdots]$

1. Determine the convolution $y=x * h$.
2. Determine from the time series the z-transforms $X(z), H(z)$ and $Y(z)$.
3. Show that $Y(z)=X(z) H(z)$
4. If x has length N_{x} (i.e., the interval of non-zero samples) and h length N_{h}, how many samples has y ?

Exercises

Answer:

1. Use the definition $y[n]=\sum_{k} h[k] x(n-k)$, here $y[n]=x[n]+x[n-1]$.

$$
\left.\begin{array}{lllllllll}
x[n]: & {[} & 2, & 3, & 2, & 1, & 0, & 0 & \cdots] \\
x[n-1]: & {[0} & 1 & 2, & 3, & 2, & 1 & 0 & \cdots]
\end{array}\right] \begin{array}{lllllll}
& & 1 & 3, & 5 & 5, & 3, \\
y[n]: & {[1,} & \cdots & \cdots
\end{array}
$$

2.

$$
\begin{aligned}
& X(z)=1+2 z^{-1}+3 z^{-2}+2 z^{-3}+z^{-4} \\
& H(z)=1+z^{-1} \\
& Y(z)=1+3 z^{-1}+5 z^{-2}+5 z^{-3}+3 z^{-4}+z^{-5}
\end{aligned}
$$

3. $H(z) X(z)=\left(1+z^{-1}\right)\left(1+2 z^{-1}+3 z^{-2}+2 z^{-3}+z^{-4}\right)$

Computing the product, we see that the same calculations are done as in item 1.
4. From the construction of the convolution it follows $N_{y}=N_{x}+N_{h}-1$.

Exercises

Frequency domain

Given a filter $h_{1}[n]$ with impulse response $h_{1}=[\cdots, 0,0,1,1,0,0, \cdots]$, and a filter $h_{2}[n]$ with impulse response $h_{2}=[\cdots, 0,0,1,0,1,0,0, \cdots]$.

1. Determine $H_{1}\left(e^{j \omega}\right)$ and $H_{2}\left(e^{j \omega}\right)$. Show that these are linear-phase filters.
2. What are the amplitude responses $\left|H_{1}\left(e^{j \omega}\right)\right|^{2}$ and $\left|H_{2}\left(e^{j \omega}\right)\right|^{2}$? Make drawings.
3. Suppose $h_{3}=h_{1} * h_{2}$. Determine the impulse response $h_{3}[n]$, and $\left|H_{3}\left(e^{j \omega}\right)\right|^{2}$. Make a drawing.
4. Show that $\left|H_{3}\left(e^{j \omega}\right)\right|^{2}=\left|H_{1}\left(e^{j \omega}\right)\right|^{2}\left|H_{2}\left(e^{j \omega}\right)\right|^{2}$.

Exercises

Answer:

1.

$$
\begin{aligned}
& H_{1}(z)=1+z^{-1} \\
& H_{1}\left(e^{j \omega}\right)=1+e^{-j \omega}=e^{-j \omega / 2}\left(e^{j \omega / 2}+e^{-j \omega / 2}\right)=2 e^{-j \omega / 2} \cos (\omega / 2) \\
& \quad H_{2}(z)=1+z^{-2} \\
& \quad H_{2}\left(e^{j \omega}\right)=1+e^{-j 2 \omega}=e^{-j \omega}\left(e^{j \omega}+e^{-j \omega}\right)=2 e^{-j \omega} \cos (\omega)
\end{aligned}
$$

2.

$$
\begin{aligned}
& \left|H_{1}\left(e^{j \omega}\right)\right|^{2}=\left(1+e^{-j \omega}\right)\left(1+e^{j \omega}\right)=2+e^{-j \omega}+e^{j \omega}=2+2 \cos (\omega) \\
& \left|H_{2}\left(e^{j \omega}\right)\right|^{2}=\left(1+e^{-j 2 \omega}\right)\left(1+e^{j 2 \omega}\right)=2+e^{-j 2 \omega}+e^{j 2 \omega}=2+2 \cos (2 \omega)
\end{aligned}
$$

3.

$$
\begin{array}{ll}
h_{3} & =[\cdots, 0,0,11,1,1,1,0,0, \cdots] \\
H_{3}(z) & =1+z^{-1}+z^{-2}+z^{-3}=\frac{1-z^{-4}}{1-z^{-1}} \\
H_{3}\left(e^{j \omega}\right) & =\frac{1-e^{-4 j \omega}}{1-e^{-j \omega}}=\frac{e^{-j 2 \omega}}{e^{-j \omega / 2}} \frac{e^{2 j \omega}-e^{-2 j \omega}}{e^{j \omega / 2}-e^{-j \omega / 2}}=e^{-j \frac{3}{2} \omega} \frac{\sin (2 \omega)}{\sin (\omega / 2)}
\end{array}
$$

4. Algebraically this is quite involved but it is simple to verify in matlab.

Exercises

Exercises

Realizations

Given the transfer function of a causal system: $H(z)=b_{0} \frac{1+b z^{-1}}{1+a z^{-1}}$
a. Draw the Direct Form I and II realizations. What is the corresponding difference equation?
b. Draw the pole/zero diagram for $a=0.5$ and $b=-0.6$.
c. What is the ROC?
d. Is this a stable system, and why?

Exercises

Answer:

$H(z)=b_{0} \frac{1+b z^{-1}}{1+a z^{-1}}$
a. Draw the Direct Form I and II realizations.

Difference equation: $y[n]+a y[n-1]=b_{0} x[n]+b_{0} b_{1} x[n-1]$

Exercises

b. Draw the pole/zero diagram for $a=0.5$ and $b=-0.6$

Pole: $z=-a$; zero: $z=-b$.

c. What is the ROC? $\{|z|>0.5\}$.
d. Is this a stable system? Yes, the unit circle is in the ROC.
(Equivalent: the system is causal and the poles are within the unit circle.)

Exercises

Filterdesign

What is the minimal filter order for an analog lowpass filter with specifications:
pass-band until 1.2 kHz , maximal ripple in the pass-band 0.5 dB
stop-band from 2.0 kHz , minimal damping in the stop-band 40 dB
a. for a Butterworth filter
b. for a Chebyshev filter

Exercises

Butterworth: $|H(\Omega)|^{2}=\frac{1}{1+\epsilon^{2}\left(\Omega / \Omega_{p}\right)^{2 N}}$
■ Pass-band: $\frac{1}{1+\epsilon^{2}}=10^{-0.5 / 10}=0.89 \quad \Rightarrow \quad \epsilon=\sqrt{\frac{1}{0.89}-1}=0.35$
■ Stop-band: $\delta_{s}=10^{-40 / 20}=0.01$
■ For the filter order:
$\left|H\left(\Omega_{s}\right)\right|^{2}=\frac{1}{1+\epsilon^{2}\left(\Omega_{s} / \Omega_{p}\right)^{2 N}}=\delta_{s}^{2} \quad \Rightarrow \quad\left(\frac{\Omega_{s}}{\Omega_{p}}\right)^{2 N}=\frac{\frac{1}{\delta_{s}^{2}}-1}{\epsilon^{2}}=: \frac{\delta^{2}}{\epsilon^{2}} \Rightarrow N=\frac{\log (\delta / \epsilon)}{\log \left(\Omega_{s} / \Omega_{p}\right)}$
Substitution gives $\delta=99.995$ and $N=11.1$, i.e., the filter order is $N \geq 12$

Exercises

Chebyshev:

$$
|H(\Omega)|^{2}=\frac{1}{1+\epsilon^{2} T_{N}^{2}\left(\Omega / \Omega_{p}\right)} \quad \text { met } \quad \begin{cases}T_{N}(x)=\cos \left(N \cos ^{-1} x\right) & \text { for }|x| \leq 1 \\ T_{N}(x)=\cosh \left(N \cosh ^{-1} x\right) & \text { for }|x|>1\end{cases}
$$

Pass-band criterion results in the same $\epsilon=0.35$ as for Butterworth
Stop-band criterion:

$$
\begin{aligned}
& \left|H\left(\Omega_{s}\right)\right|^{2}=\frac{1}{1+\epsilon^{2} T_{N}^{2}\left(\Omega_{s} / \Omega_{p}\right)}=\delta_{s}^{2} \quad \Rightarrow \quad T_{N}^{2}\left(\Omega_{s} / \Omega_{p}\right)=\frac{\frac{1}{\delta_{s}^{2}}-1}{\epsilon^{2}}=: \frac{\delta^{2}}{\epsilon^{2}} \\
& \Rightarrow \quad \cosh \left(N \cosh ^{-1}\left(\Omega_{s} / \Omega_{p}\right)\right)=\frac{\delta}{\epsilon} \quad \Rightarrow \quad N=\frac{\cosh ^{-1}(\delta / \epsilon)}{\cosh ^{-1}\left(\Omega_{s} / \Omega_{p}\right)}
\end{aligned}
$$

Substitution gives $N=5.78$, hence the filter order is $N \geq 6$.

$$
\begin{aligned}
& \text { Note: in case } \cosh ^{-1}(x) \text { is not on your calculator, you can compute it as } \\
& \cosh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right) \text {. Derivation: } \\
& x=\cosh (y):=\frac{e^{y}+e^{-y}}{2}, \quad \sinh (y):=\frac{e^{y}-e^{-y}}{2}, \quad \cosh ^{2}(y)-\sinh ^{2}(y)=1 \\
& \text { Hence } \sinh (y)=\sqrt{x^{2}-1} \text { and } e^{y}=\cosh (y)+\sinh (y)=x+\sqrt{x^{2}-1} .
\end{aligned}
$$

Exercises

Digital filter design

Use the bilinear transform to design a digital low-pass filter $H(z)$ with the following parameters:

Pass-band: $0 \leq|\omega| \leq 0.3 \pi$, maximal ripple 1 dB
Stop-band: $0.35 \pi \leq|\omega| \leq \pi$, minimal damping 60 dB
a Translate these specifications to the analog frequency domain
b What filter order is required if we use a Butterworth filter?
(To determine the filter coefficients, a computer is needed.)

Exercises

Answer

a The bilinear transform results in $\Omega=\tan \left(\frac{\omega}{2}\right)$. Here:

$$
\Omega_{p}=\tan (0.3 \pi / 2)=0.5095, \quad \Omega_{s}=\tan (0.35 \pi / 2)=0.6128
$$

b The equation for a Butterworth filter is

$$
|H(\Omega)|^{2}=\frac{1}{1+\epsilon^{2}\left(\Omega / \Omega_{p}\right)^{2 N}}
$$

We obtain

$$
\begin{array}{r}
\text { Pass-band ripple: } \frac{1}{1+\epsilon^{2}}=10^{-1 / 10} \Rightarrow \epsilon=0.5088 \\
\text { Stop-band damping: } \frac{1}{1+\epsilon^{2}\left(\Omega_{s} / \Omega_{p}\right)^{2 N}} \leq \delta_{s}^{2}=10^{-60 / 10}=10^{-6}
\end{array}
$$

Define $\delta:=\sqrt{\frac{1}{\delta_{s}^{2}}-1}=999.9$ and simplify:

$$
N \geq \frac{\log (\delta / \epsilon)}{\log \left(\Omega_{s} / \Omega_{p}\right)}=41.07
$$

This reults in $N=42$.

Exercises

Realizations

Given the realization:

a. Determine the impulse response
b. Determine a realization for the inverse system: $y[n] \rightarrow x[n]$

Exercises

Introduce the extra parameter $P(z)$ (subsequently eliminated):

$$
\begin{aligned}
\left\{\begin{array} { r l }
{ P (z) } & { = X (z) + 0 . 8 P (z) z ^ { - 1 } } \\
{ Y (z) } & { = 2 P (z) + 3 P (z) z ^ { - 1 } }
\end{array} \Rightarrow \left\{\begin{array}{rl}
P(z) & =X(z) \frac{1}{1-0.8 z^{-1}} \\
Y(z) & =X(z) \frac{2+3 z^{-1}}{1-0.8 z^{-1}}
\end{array}\right.\right. \\
H(z)=\frac{2+3 z^{-1}}{1-0.8 z^{-1}}=\frac{2}{1-0.8 z^{-1}}+z^{-1} \frac{3}{1-0.8 z^{-1}} \quad \Rightarrow \quad h[n]=2(0.8)^{n} u[n]+3(0.8)^{n-1} u[n-1]
\end{aligned}
$$

with $u[n]$ a unit step function.
Inverse system:

$$
\left\{\begin{array} { l }
{ P (z) = X (z) + 0 . 8 P (z) z ^ { - 1 } } \\
{ Y (z) = 2 P (z) + 3 P (z) z ^ { - 1 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
P(z)=\frac{1}{2}\left(Y(z)-3 P(z) z^{-1}\right) \\
X(z)=P(z)-0.8 P(z) z^{-1}
\end{array}\right.\right.
$$

Exercises

$$
\left\{\begin{array}{l}
P(z)=\frac{1}{2}\left(Y(z)-3 P(z) z^{-1}\right) \\
X(z)=P(z)-0.8 P(z) z^{-1}
\end{array}\right.
$$

Exercises

a Determine the transfer function $H(z)$ of the following system:

b Draw the "Direct form II" realization
c Draw the transposed system.
d What is the transfer function of the transposed system?

Exercises

Answer

a

$$
H(z)=5+\frac{z^{-1}+2 z^{-2}}{1-1 / 2 z^{-2}}=\frac{5+z^{-1}-1 / 2 z^{-2}}{1-1 / 2 z^{-2}}
$$

b Draw the "Directe form II" realization

Exercises

c Draw the transposed system.

d What is the transfer function of the transposed system? Unchanged.

Exercises

We would like to design an analog high-pass filter with the following specifications:

- Pass-band: from $f_{p}=50 \mathrm{~Hz}$; ripple in the pass-band: $\leq 1 \mathrm{~dB}$
- Stop-band: until $f_{s}=40 \mathrm{~Hz}$; stop-band damping: $\geq 30 \mathrm{~dB}$.

We start with a Butterworth low-pass filter structure with the form

$$
|H(\Omega)|^{2}=\frac{1}{1+\epsilon^{2}\left(\Omega / \Omega_{c}\right)^{2 N}}
$$

a Make a neat drawing of $|H(\Omega)|^{2}$. Also indicate Ω_{c}, and the corresponding value of $|H(\Omega)|^{2}$.

Exercises

We apply to $H(\Omega)$ a low-to-high frequency transform: $\Omega \rightarrow \Omega_{c}^{2} / \Omega$. Put $G(\Omega)=$ $H\left(\Omega_{c}^{2} / \Omega\right)$.
b Give an expression for $|G(\Omega)|^{2}$?
c Make a neat drawing of $|G(\Omega)|^{2}$. Also indicate Ω_{c}.
d What do you choose for Ω_{c} ? Which value do you choose for $\left|G\left(\Omega_{c}\right)\right|^{2}$?
e Compute step-by-step ϵ and the required filter order N for $G(\Omega)$ such that the given specifications are met.

Exercises

Answer

a

b

$$
|G(\Omega)|^{2}=\frac{1}{1+\epsilon^{2}\left(\Omega_{c} / \Omega\right)^{2 N}}
$$

Exercises

C

$\mathrm{d}\left|G\left(\Omega_{c}\right)\right|^{2}=\frac{1}{1+\epsilon^{2}}$.
We set Ω_{c} equal to $\Omega_{p}=2 \pi \cdot 50$, and $\left|G\left(\Omega_{c}\right)\right|^{2}$ equal to -1 dB .
e Determine ϵ by evaluating at $\Omega_{p}=2 \pi \cdot 50$:

$$
\left|G\left(\Omega_{p}\right)\right|^{2}=\frac{1}{1+\epsilon^{2}}=10^{-1 / 10} \quad \Rightarrow \quad \epsilon=\sqrt{10^{1 / 10}-1}=0.5088
$$

Exercises

Determine N by evaluating at $\Omega_{s}=2 \pi \cdot 40$:

$$
\begin{gathered}
\left|G\left(\Omega_{s}\right)\right|^{2}=\frac{1}{1+\epsilon^{2}\left(\frac{2 \pi \cdot 50}{2 \pi \cdot 40}\right)^{2 N}}=10^{-30 / 10} \quad \Rightarrow \quad\left(\frac{50}{40}\right)^{2 N}=\frac{10^{30 / 10}-1}{\epsilon^{2}}=3858 \\
N=\frac{1}{2} \frac{\log (3858)}{\log (5 / 4)}=18.5
\end{gathered}
$$

The required filter order is $N=19$.

