EE2S11: Signals and Systems

17. Exercises for part 2 (second part)

- 1. Convolution
- 2. Realizations
- 3. Filter design (analog, digital)

Convolution

Given a signal x[n] with samples $x = [\cdots, 0, 0, 1], 2, 3, 2, 1, 0, 0, \cdots]$ (the square indicates x[0]), and a filter h[n] with impulse response $h = [\cdots, 0, 0, 1], 1, 0, 0, \cdots]$

- 1. Determine the convolution y = x * h.
- 2. Determine from the time series the *z*-transforms X(z), H(z) and Y(z).
- 3. Show that Y(z) = X(z)H(z)
- If x has length N_x (i.e., the interval of non-zero samples) and h length N_h, how many samples has y?

Answer:

1. Use the definition
$$y[n] = \sum_{k} h[k]x(n-k)$$
, here $y[n] = x[n] + x[n-1]$.

$$x[n]$$
:[1]2,3,2,1,0,0 \cdots] $x[n-1]$:[0]12,3,2,1,0 \cdots] $y[n]$:[1]3,5,5,3,1,0 \cdots]

2.

$$X(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$$

$$H(z) = 1 + z^{-1}$$

$$Y(z) = 1 + 3z^{-1} + 5z^{-2} + 5z^{-3} + 3z^{-4} + z^{-5}$$

3. $H(z)X(z) = (1 + z^{-1})(1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4})$

Computing the product, we see that the same calculations are done as in item 1.

4. From the construction of the convolution it follows $N_y = N_x + N_h - 1$.

Frequency domain

Given a filter $h_1[n]$ with impulse response $h_1 = [\cdots, 0, 0, [1], 1, 0, 0, \cdots]$, and a filter $h_2[n]$ with impulse response $h_2 = [\cdots, 0, 0, [1], 0, 1, 0, 0, \cdots]$.

- 1. Determine $H_1(e^{j\omega})$ and $H_2(e^{j\omega})$. Show that these are linear-phase filters.
- 2. What are the amplitude responses $|H_1(e^{j\omega})|^2$ and $|H_2(e^{j\omega})|^2$? Make drawings.
- 3. Suppose $h_3 = h_1 * h_2$. Determine the impulse response $h_3[n]$, and $|H_3(e^{j\omega})|^2$. Make a drawing.

4. Show that
$$|H_3(e^{j\omega})|^2 = |H_1(e^{j\omega})|^2 |H_2(e^{j\omega})|^2$$
.

Answer:

1. $H_1(z) = 1 + z^{-1}$ $H_1(e^{j\omega}) = 1 + e^{-j\omega} = e^{-j\omega/2}(e^{j\omega/2} + e^{-j\omega/2}) = 2e^{-j\omega/2}\cos(\omega/2)$ $H_2(z) = 1 + z^{-2}$ $H_2(e^{j\omega}) = 1 + e^{-j2\omega} = e^{-j\omega}(e^{j\omega} + e^{-j\omega}) = 2e^{-j\omega}\cos(\omega)$ 2. $|H_1(e^{j\omega})|^2 = (1 + e^{-j\omega})(1 + e^{j\omega}) = 2 + e^{-j\omega} + e^{j\omega} = 2 + 2\cos(\omega)$ $|H_2(e^{j\omega})|^2 = (1 + e^{-j2\omega})(1 + e^{j2\omega}) = 2 + e^{-j2\omega} + e^{j2\omega} = 2 + 2\cos(2\omega)$ 3. $h_3 = [\cdots, 0, 0, 1], 1, 1, 1, 0, 0, \cdots]$ $H_3(z) = 1 + z^{-1} + z^{-2} + z^{-3} = \frac{1 - z^{-4}}{1 - z^{-1}}$ $H_3(e^{j\omega}) = \frac{1 - e^{-4j\omega}}{1 - e^{-i\omega}} = \frac{e^{-j2\omega}}{e^{-i\omega/2}} \frac{e^{2j\omega} - e^{-2j\omega}}{e^{i\omega/2}} = e^{-j\frac{3}{2}\omega} \frac{\sin(2\omega)}{\sin(\omega/2)}$

4. Algebraically this is quite involved but it is simple to verify in matlab.

Realizations

Given the transfer function of a causal system: $H(z) = b_0 \frac{1 + bz^{-1}}{1 + az^{-1}}$

- a. Draw the Direct Form I and II realizations. What is the corresponding difference equation?
- b. Draw the pole/zero diagram for a = 0.5 and b = -0.6.
- c. What is the ROC?
- d. Is this a stable system, and why?

Answer:

 $H(z) = b_0 \frac{1 + bz^{-1}}{1 + az^{-1}}$

a. Draw the Direct Form I and II realizations.

Difference equation: $y[n] + ay[n-1] = b_0x[n] + b_0b_1x[n-1]$

b. Draw the pole/zero diagram for a = 0.5 and b = -0.6

- c. What is the ROC? $\{|z| > 0.5\}$.
- d. Is this a stable system? Yes, the unit circle is in the ROC.

(Equivalent: the system is causal and the poles are within the unit circle.)

Filterdesign

What is the minimal filter order for an analog lowpass filter with specifications:

pass-band until 1.2 kHz, maximal ripple in the pass-band 0.5 dB stop-band from 2.0 kHz, minimal damping in the stop-band 40 dB

- a. for a Butterworth filter
- b. for a Chebyshev filter

$$|H(\Omega_s)|^2 = \frac{1}{1 + \epsilon^2 (\Omega_s / \Omega_p)^{2N}} = \delta_s^2 \quad \Rightarrow \quad \left(\frac{\Omega_s}{\Omega_p}\right)^{2N} = \frac{\frac{1}{\delta_s^2} - 1}{\epsilon^2} =: \frac{\delta^2}{\epsilon^2} \quad \Rightarrow \quad N = \frac{\log(\delta/\epsilon)}{\log(\Omega_s / \Omega_p)}$$

Substitution gives $\delta = 99.995$ and N = 11.1, i.e., the filter order is $N \ge 12$

Chebyshev:

$$|H(\Omega)|^{2} = \frac{1}{1 + \epsilon^{2} T_{N}^{2}(\Omega/\Omega_{p})} \quad \text{met} \quad \begin{cases} T_{N}(x) = \cos(N \cos^{-1} x) & \text{for } |x| \leq 1 \\ T_{N}(x) = \cosh(N \cosh^{-1} x) & \text{for } |x| > 1 \end{cases}$$

Pass-band criterion results in the same $\epsilon = 0.35$ as for Butterworth

Stop-band criterion:

$$|H(\Omega_s)|^2 = \frac{1}{1 + \epsilon^2 T_N^2(\Omega_s/\Omega_p)} = \delta_s^2 \quad \Rightarrow \quad T_N^2(\Omega_s/\Omega_p) = \frac{\frac{1}{\delta_s^2} - 1}{\epsilon^2} =: \frac{\delta^2}{\epsilon^2}$$
$$\Rightarrow \quad \cosh(N\cosh^{-1}(\Omega_s/\Omega_p)) = \frac{\delta}{\epsilon} \quad \Rightarrow \quad N = \frac{\cosh^{-1}(\delta/\epsilon)}{\cosh^{-1}(\Omega_s/\Omega_p)}$$

Substitution gives N = 5.78, hence the filter order is $N \ge 6$.

Note: in case $\cosh^{-1}(x)$ is not on your calculator, you can compute it as $\cosh^{-1}(x) = \ln(x + \sqrt{x^2 - 1})$. Derivation: $x = \cosh(y) := \frac{e^y + e^{-y}}{2}$, $\sinh(y) := \frac{e^y - e^{-y}}{2}$, $\cosh^2(y) - \sinh^2(y) = 1$ Hence $\sinh(y) = \sqrt{x^2 - 1}$ and $e^y = \cosh(y) + \sinh(y) = x + \sqrt{x^2 - 1}$.

Digital filter design

Use the bilinear transform to design a digital low-pass filter H(z) with the following parameters:

Pass-band: $0 \le |\omega| \le 0.3\pi$, maximal ripple 1 dB Stop-band: $0.35\pi \le |\omega| \le \pi$, minimal damping 60 dB

- a Translate these specifications to the analog frequency domain
- b What filter order is required if we use a Butterworth filter?

(To determine the filter coefficients, a computer is needed.)

Answer

a The bilinear transform results in $\Omega = \tan(\frac{\omega}{2})$. Here:

 $\Omega_p = \tan(0.3\pi/2) = 0.5095, \qquad \Omega_s = \tan(0.35\pi/2) = 0.6128$

b The equation for a Butterworth filter is

$$|H(\Omega)|^2 = \frac{1}{1 + \epsilon^2 (\Omega/\Omega_p)^{2N}}$$

We obtain

Pass-band ripple:
$$\frac{1}{1+\epsilon^2} = 10^{-1/10} \Rightarrow \epsilon = 0.5088$$

Stop-band damping: $\frac{1}{1+\epsilon^2(\Omega_s/\Omega_p)^{2N}} \le \delta_s^2 = 10^{-60/10} = 10^{-6}$
Define $\delta := \sqrt{\frac{1}{\delta_s^2} - 1} = 999.9$ and simplify:
 $N \ge \frac{\log(\delta/\epsilon)}{\log(\Omega_s/\Omega_p)} = 41.07$

This reults in N = 42.

Realizations

Given the realization:

- a. Determine the impulse response
- b. Determine a realization for the inverse system: $y[n] \rightarrow x[n]$

Introduce the extra parameter P(z) (subsequently eliminated):

$$\begin{cases} P(z) = X(z) + 0.8P(z)z^{-1} \\ Y(z) = 2P(z) + 3P(z)z^{-1} \end{cases} \Rightarrow \begin{cases} P(z) = X(z)\frac{1}{1-0.8z^{-1}} \\ Y(z) = X(z)\frac{2+3z^{-1}}{1-0.8z^{-1}} \end{cases}$$
$$\Rightarrow h[n] = 2(0.8)^{n}u[n] + 3(0.8)^{n-1}u[n-1]$$

with u[n] a unit step function.

Inverse system:

$$\begin{cases} P(z) = X(z) + 0.8P(z)z^{-1} \\ Y(z) = 2P(z) + 3P(z)z^{-1} \end{cases} \Rightarrow \begin{cases} P(z) = \frac{1}{2}(Y(z) - 3P(z)z^{-1}) \\ X(z) = P(z) - 0.8P(z)z^{-1} \end{cases}$$

$$\begin{cases} P(z) = \frac{1}{2}(Y(z) - 3P(z)z^{-1}) \\ X(z) = P(z) - 0.8P(z)z^{-1} \end{cases}$$

a Determine the transfer function H(z) of the following system:

- b Draw the "Direct form II" realization
- c Draw the transposed system.
- d What is the transfer function of the transposed system?

Answer

а

$$H(z) = 5 + \frac{z^{-1} + 2z^{-2}}{1 - 1/2z^{-2}} = \frac{5 + z^{-1} - 1/2z^{-2}}{1 - 1/2z^{-2}}$$

b Draw the "Directe form II" realization

c Draw the transposed system.

d What is the transfer function of the transposed system? Unchanged.

We would like to design an analog *high-pass* filter with the following specifications:

- Pass-band: from $f_p = 50$ Hz; ripple in the pass-band: ≤ 1 dB
- Stop-band: until $f_s = 40$ Hz; stop-band damping: \geq 30 dB.

We start with a Butterworth low-pass filter structure with the form

$$|H(\Omega)|^2 = \frac{1}{1 + \epsilon^2 (\Omega/\Omega_c)^{2N}}$$

a Make a neat drawing of $|H(\Omega)|^2$. Also indicate Ω_c , and the corresponding value of $|H(\Omega)|^2$.

We apply to $H(\Omega)$ a low-to-high frequency transform: $\Omega \to \Omega_c^2/\Omega$. Put $G(\Omega) = H(\Omega_c^2/\Omega)$.

- b Give an expression for $|G(\Omega)|^2$?
- c Make a neat drawing of $|G(\Omega)|^2$. Also indicate Ω_c .
- d What do you choose for Ω_c ? Which value do you choose for $|G(\Omega_c)|^2$?
- e Compute step-by-step ϵ and the required filter order *N* for $G(\Omega)$ such that the given specifications are met.

Answer

а

b

$$|G(\Omega)|^2 = \frac{1}{1 + \epsilon^2 (\Omega_c / \Omega)^{2N}}$$

С

d $|G(\Omega_c)|^2 = \frac{1}{1+\epsilon^2}$.

We set Ω_c equal to $\Omega_p = 2\pi \cdot 50$, and $|G(\Omega_c)|^2$ equal to -1 dB.

e Determine ϵ by evaluating at $\Omega_p = 2\pi \cdot 50$:

$$|G(\Omega_p)|^2 = \frac{1}{1+\epsilon^2} = 10^{-1/10} \qquad \Rightarrow \qquad \epsilon = \sqrt{10^{1/10} - 1} = 0.5088.$$

Determine *N* by evaluating at $\Omega_s = 2\pi \cdot 40$:

$$|G(\Omega_{s})|^{2} = \frac{1}{1 + \epsilon^{2} (\frac{2\pi \cdot 50}{2\pi \cdot 40})^{2N}} = 10^{-30/10} \implies (\frac{50}{40})^{2N} = \frac{10^{30/10} - 1}{\epsilon^{2}} = 3858$$
$$N = \frac{1}{2} \frac{\log(3858)}{\log(5/4)} = 18.5$$

The required filter order is N = 19.