## EE2S11: Signals and Systems

17. Exercises for part 2 (first part)
18. Sampling
19. $z$-transform, inverse $z$-transform
20. DTFT (missing...)

## Exercises

## Sampling

Given $x_{a}(t)=\frac{\sin \left(\Omega_{0} t\right)}{t}$.
a) What is $X_{a}(\Omega)$ ? Make a drawing of $\left|X_{a}(\Omega)\right|$.
b) Is $x_{a}(t)$ band limited? (What is the maximal frequency in the signal?)
c) At which frequency should I at least sample to avoid aliasing (i.e., the Nyquist condition)?
d) We sample at this frequency, resulting in $x[n]$. Determine the corresponding spectrum $X(\omega)$ and make a drawing.

## Exercises

## Answer

a)

$$
X_{a}(\Omega)=\pi\left[u\left(\Omega+\Omega_{0}\right)-u\left(\Omega-\Omega_{0}\right)\right]
$$


b) Band limited: the maximal frequency is $\Omega_{0}$.
c) Twice the highest frequency: $\Omega_{s}=2 \Omega_{0}$. The sample frequency is

$$
F_{s}=\frac{\Omega_{s}}{2 \pi}=\frac{\Omega_{0}}{\pi}
$$

## Exercises

d) The spectrum of $x_{s}(t)=\sum_{n} x[n] \delta\left(t-n T_{s}\right)$ is $X_{s}(\Omega)=\frac{1}{T_{s}} \sum_{k} X_{a}\left(\Omega-k \Omega_{s}\right)$.

This corresponds to the spectrum $X(\omega)$ of $x[n]$, with $\omega=2 \pi \Omega / \Omega_{s}$, so that $\Omega_{s} \rightarrow 2 \pi$.


The spectrum is flat, this matches with $x[n]=A \delta[n]$, for a certain amplitude
A. Check: $x[n]=x_{a}\left(n T_{s}\right)$ with $T_{s}=\frac{1}{F_{s}}=\frac{2 \pi}{\Omega_{s}}=\frac{\pi}{\Omega_{0}}$, so that

$$
x[n]=\frac{\sin \left(\Omega_{0} \cdot n \frac{\pi}{\Omega_{0}}\right)}{n \frac{\pi}{\Omega_{0}}}=\Omega_{0} \frac{\sin (n \pi)}{n \pi}=\Omega_{0} \delta[n]
$$

## Exercises

## Sampling

Given an analog real-valued signal $x_{a}(t)$ with frequency spectrum:


This signal is sampled with a sample frequency of 40 MHz :

a Is the Nyquist criterion satisfied?
b Make a drawing of the frequency spectrum of the digital signal $x[n]$. Also indicate which frequencies (in Hz) play a role.

## Exercises

## Answer

a No: the highest frequency in the signal is 30.05 MHz , the sample frequency should be twice as large ( 60.1 MHz ), which is not the case here.
b Due to the sampling, part of the spectrum at 30 MHz is repeated with period 40 MHz and is seen at $70,110 \mathrm{MHz}$ etc and also at $-10,-50, \cdots \mathrm{MHz}$. The part of the spectrum at -30 MHz (not shown in the graph but the signal was assumed real-valued) is repeated and is seen at $10,50, \cdots \mathrm{MHz}$.


## Exercises

## Sampling

An RFID tag (e.g.. a smart card) modulates the transmitted carrier signal of a reader device. The transmitted carrier is at 868 MHz , the modulation of the tag is a square wave with a frequency around 40 kHz .

Below, the spectrum of the received signal $x_{a}(t)$ is shown (the transmitted carrier signal is dominantly present):


## Exercises

Make a drawing of the spectrum of $x[n]$ if we sample at 250 MHz (accurately indicate the frequencies; also mark the fundamental interval).

## Answer

The spectrum becomes periodic with period 250 MHz . Due to aliasing, the frequencies around 868 MHz are shifted with multiples of 250 MHz , i.e.,

$$
868+k \cdot 250= \begin{cases}618 \mathrm{MHz}, & k=-1 \\ 368 & k=-2 \\ 118 & k=-3\end{cases}
$$

Etc. The spectrum is symmetric, we also have a part at -868 MHz which is shifted with multiples of 250 MHz , i.e.,

$$
-868+k \cdot 250= \begin{cases}132 \mathrm{MHz}, & k=4 \\ 382 & k=5 \\ 632 & k=6\end{cases}
$$

## Exercises



## Exercises

## Spectrum of discrete-time signals

A simple scrambler swaps high and low frequencies in a signal



How can we carry out this operation? And reverse it?

## Exercises

## Oplossing:

First make a drawing of a larger part of the frequency domain (the spectrum is periodic)


It is seen that the scrambler shifts the signal over $\pi$ rad: $Y(\omega)=X(\omega-\pi)$.
In time domain, a frequency shift corresponds to modulation:

$$
Y(\omega)=X\left(\omega-\omega_{0}\right) \quad \Leftrightarrow \quad y[n]=x[n] \cdot e^{j \omega_{0} n}
$$

At $\omega_{0}=\pi$ we find $y[n]=x[n] \cdot(-1)^{n}$. Inverse operation: repeat the modulation.

## Exercises

## Z-transform

Determine the $z$-transform and the ROC of
a) $x[n]=[\cdots, 0,1,2,1,0, \cdots]$
b) $x[n]=\operatorname{sgn}[n]= \begin{cases}1, & n \geq 0, \\ -1, & n<0\end{cases}$
c) $x[n]=-a^{n} u[-n]$. For which values of $a$ does the DTFT $X\left(e^{j \omega}\right)$ exist?

## Exercises

## Answer:

a) $X(z)=z+2+z^{-1}, \operatorname{ROC}: \mathbb{C} \backslash\{0, \infty\}$.
b) For the causal part $(n \geq 0)$ we find

$$
X_{c}(z)=\frac{1}{1-z^{-1}} \quad \text { ROC: }|z|>1
$$

For the anti-causal part (assume $n<0$ ):

$$
X_{a c}(z)=-\frac{z}{1-z} \quad \text { ROC: }|z|<1
$$

The $z$-transform of the sum is (take the intersection of the ROC's)

$$
X(z)=\frac{1}{1-z^{-1}}-\frac{z}{1-z} \quad \text { ROC: empty! }
$$

Hence the $z$-transform does not exist.

## Exercises

c) The signal exists for $n \leq 0$.

$$
X(z)=-1-\frac{z}{a}-\frac{z^{2}}{a^{2}}-\cdots=-\frac{1}{1-z / a}=\frac{a z^{-1}}{1-a z^{-1}} \quad \text { ROC: }|z|<a
$$

The DTFT exists if the ROC contains the unit circle: for $|a|>1$.

## Exercises

## Z-transform

Determine the $z$-transform and the ROC of $x_{1}[n]=u[n]$ and of $x_{2}[n]=-u[-n-1]$.

## Answer:

$$
\begin{gathered}
X_{1}(z)=1+z^{-1}+z^{-2}+\cdots=\frac{1}{1-z^{-1}} \\
X_{2}(z)=-z-z^{2}-\cdots=-\frac{z}{1-z}=\frac{1}{1-z^{-1}}
\end{gathered} \quad \text { ROC: }|z|>1<1<10
$$

The same $z$-transform but a different ROC.
Note the relation between the ROC (inside or outside of a circle) and (anti-)causality of $x[n]$ !

## Exercises

## Inverse Z-transform

Given $X(z)=\frac{1-z^{-10}}{1-z^{-1}}$, determine $x[n]$. (Assume that the ROC is $|z|>1$.)

## Answer:

For this ROC, $x[n]$ is causal. Split $X(z)$ :

$$
X(z)=\frac{1}{1-z^{-1}}-\frac{z^{-10}}{1-z^{-1}}
$$

Using the $z$-transform of $u[n]$ and a delay of 10 samples, we find

$$
x[n]=u[n]-u[n-10]
$$

## Exercises

## Difference equations and the $z$-transform

Given the 2nd order LTI system with difference equation

$$
y[n]=0.25 y[n-2]+x[n]
$$

Here, $x[n]$ is the input and $y[n]$ is the output.
a) If $y[n]=0.5^{n} u[n]$, then compute $x[n]$.
b) What is the system impulse response.

## Exercises

## Answer

$$
Y(z)=\frac{X(z)}{1-0.25 z^{-2}} \quad \text { and } \quad Y(z)=\frac{1}{1-0.5 z^{-1}}
$$

Hence

$$
X(z)=1+0.5 z^{-1} \quad \text { so that } \quad x[n]=\delta[n]+0.5 \delta[n-1]
$$

The transfer function is (take $X(z)=1$ so that $Y(z)=H(z)$ )

$$
H(z)=\frac{1}{1-0.25 z^{-2}}=1+0.25 z^{-2}+(0.25)^{2} z^{-4}+\cdots
$$

The impulse response is

$$
h[n]=\left[\boxed{1}, 0,0.25,0,(0.25)^{2}, 0 \cdots\right]
$$

This is also found if we carry out the recursion step-by-step taking as input an impulse $x[n]=\delta[n]$.

## Exercises

The impulse response is obtained in closed form by computing the poles of $H(z)$, and splitting them (partial fraction expansion):

$$
\begin{gathered}
H(z)=\frac{1}{\left(1-0.5 z^{-1}\right)\left(1+0.5 z^{-1}\right)}=\frac{0.5}{1-0.5 z^{-1}}+\frac{0.5}{1+0.5 z^{-1}} \\
h[n]=0.5\left\{(0.5)^{n} u[n]+(-0.5)^{n} u[n]\right\}
\end{gathered}
$$

Verify that this gives the same result!

## Exercises

Determine the inverse $z$-transform of

$$
X(z)=\frac{8-4 z^{-1}}{z^{-2}+6 z^{-1}+8}
$$

Assume that $x[n]$ is causal.

## Answer

First write this as a polynomial in $z^{-1}$ and make proper - already the case here.
Determine the poles and split into elementary terms (partial fraction expansion):

$$
X(z)=\frac{2-z^{-1}}{2\left(1+0.25 z^{-1}\right)\left(1+0.5 z^{-1}\right)}=\frac{A}{1+0.25 z^{-1}}+\frac{B}{1+0.5 z^{-1}}
$$

where we find $A=-3$ en $B=4$.
The inverse is found as

$$
x[n]=-3(-0.25)^{n} u[n]+4(-0.5)^{n} u[n]
$$

