Exercises Ch. 10 z-transform

Exercise 1 - exercises taken from Chaparro (first edition)
Mapping of s-plane into the z-plane
The poles of the Laplace transform $X(s)$ of an analog signal $x(t)$ are

$$
\begin{aligned}
& p_{1,2}=-1 \pm j 1 \\
& p_{3}=0 \\
& p_{4,5}= \pm j 1
\end{aligned}
$$

There are no zeros. If we use the transformation $z=e^{s T_{s}}$ with $T_{s}=1$:
(a) Determine where the given poles are mapped into the z-plane.
(b) How would you determine if these poles are mapped inside, on, or outside the unit circle in the z plane? Explain.
(c) Carefully plot the poles and the zeros of the analog and the discrete-time signals in the Laplace and the z-planes.

Exercises Ch. 10 z-transform

answer

Pr 9.1 (a)(c) For $T_{s}=1$ the transformation from the s-plane to the z-plane $z=e^{s}$ is such that for $s=\sigma+j \Omega$

$$
z=e^{\sigma} e^{j \Omega}
$$

For $s=-1 \pm j 1$, the poles of the analog system, the corresponding singularities in the z-plane are given by

$$
z=e^{-1} e^{ \pm j 1}
$$

which are inside the unit disk as $e^{-1}<1$ with a radian frequency of ± 1
The pole $s=0$ is mapped into $z=e^{0}=1$, and the poles $s= \pm j 1$ are mapped into $z=1 e^{ \pm j 1}$ with unit magnitude and radian frequencies ± 1.
(b) By expressing $z=r e^{j \omega}=e^{\sigma} e^{j \Omega}$ for $T_{s}=1$, the radius is given by $r=e^{\sigma}$ so that if $\sigma<0$ the singularities are inside the unit circle, if $\sigma=0$ they are on the unit circle, and if $\sigma>0$ they are outside the unit circle.

Exercises Ch. 10 z-transform

Exercise 2

Mapping of z-plane into the s-plane

Consider the inverse relation given by $z=e^{s T_{s}}$-that is, how to map the z-plane into the s-plane.
(a) Find an expression for s in terms of z from the relation $z=e^{s T_{s}}$.
(b) Consider the mapping of the unit circle (i.e., $z=1 e^{j \omega},-\pi \leq \omega<\pi$). Obtain the segment in the s-plane resulting from the mapping.
(c) Consider the mapping of the inside and the outside of the unit circle. Determine the regions in the s-plane resulting from the mappings.
(d) From the above results, indicate the region in the s-plane to which the whole z-plane is mapped into. Since $\omega=\omega+2 \pi$, is this mapping unique? Explain.

Exercises Ch. 10 z-transform

answer

$\underline{\operatorname{Pr} 9.2}$ (a) Solving for s in the given relation we obtain

$$
s=\log (z) / T_{s}
$$

(b) Points on the unit circle that in the z-plane are represented by $z=1 e^{j \omega}$ (unit radius and frequency $-\pi \leq \omega<\pi$) will be mapped into

$$
s=\frac{\log \left(1 e^{j \omega}\right)}{T_{s}}=\frac{0+j \omega}{T_{s}}=j \frac{\omega}{T_{s}}=j \Omega
$$

or points in the $j \Omega$ axis of the s-plane. For instance $z=1=1 e^{j 0}$ is mapped into $s=j 0$, the origin of the s-plane; $z=1 e^{ \pm j \pi / 2}$ is mapped into $s= \pm j \pi /\left(2 T_{s}\right)$ and $z=-1=1 e^{ \pm j \pi}$ maps into $s= \pm j \pi / T_{s}$. Thus, the unit disk is mapped into a line in the $j \Omega$-axis from $-\pi / T_{s}$ to π / T_{s}.
(c) In general, $z=r e^{j \omega}$ is mapped into

$$
s=\frac{\log \left[r e^{j \omega}\right]}{T_{s}}=\underbrace{\frac{\log [r]}{T_{s}}}_{\sigma}+j \underbrace{\frac{\omega}{T_{s}}}_{\Omega}
$$

where we used $r=e^{\sigma T_{s}}$ and $\omega=\Omega T_{s}$ giving us the correct expression for $s=\sigma+j \Omega$. The outside of the unit circle, i.e., $r>1$ maps into the right-hand strip defined by $\sigma>0$ and $-\pi / T_{s} \leq \Omega<\pi / T_{s}$, the inside of the unit circle, i.e, $r \leq 1$ maps into the left-hand strip defined by $\sigma<0$ and $-\pi / T_{s} \leq \Omega<\pi / T_{s}$.

Exercises Ch. 10 z-transform

answer

(d) The above shows that the z-plane is mapped into the strip between $-\pi / T_{s}$ and π / T_{s} for all σ in the s-plane. Adding $2 \pi k$, multiples of 2π, the discrete frequencies remain the same, i.e., $\omega=\omega+2 \pi k$ for $k=0, \pm 1, \pm 2, \cdots$. The mapping of the z-plane with these frequencies gives the same values of σ as before, but the analog frequencies will be the mapping of $(2 k-1) \pi \leq \omega<(2 k+1) \pi$:

$$
\frac{(2 k-1) \pi}{T_{s}} \leq \Omega<\frac{(2 k+1) \pi}{T_{s}}
$$

corresponding to strips of width $2 \pi / T_{s}$ above (for $k \geq 1$) and below (for $k \leq-1$) the one we considered before. Thus, the z-plane is mapped separately into strips of the same width in the s-plane.

Exercises Ch. 10 z-transform

Exercise 3

Z-transform and ROCs

Consider the noncausal sequence

$$
s[n]=s_{1}[n]+s_{2}[n]
$$

where $s_{1}[n]=u[n]$ is causal and $s_{2}[n]=-u[-n]$ is anti-causal. This signal is the signum, or sign function, that extracts the sign of a real-valued signal-that is,

$$
s[n]=\operatorname{sgn}(x[n])=\left\{\begin{array}{rl}
-1 & x[n]<0 \\
0 & x[n]=0 \\
1 & x[n]>0
\end{array}\right.
$$

(a) Find the Z-transforms of $s_{1}[n]$ and $s_{2}[n]$, indicating the corresponding ROC.
(b) Determine the Z-transform $S(z)$.

Exercises Ch. 10 z-transform

answer
$\underline{\operatorname{Pr} 9.3}$ (a) The Z-transform of $s_{1}[n]$ is

$$
S_{1}(z)=\sum_{n=0}^{\infty} z^{-n}=\frac{1}{1-z^{-1}}
$$

provided that $\left|z^{-1}\right|<1$, thus $|z|>1$ is the region of convergence for $S_{1}(z)$. The Z-transform of $s_{2}[n]$ is given by

$$
S_{2}(z)=-\sum_{n=-\infty}^{0} z^{-n}=-\sum_{m=0}^{\infty} z^{m}=\frac{-1}{1-z}
$$

where the last sum converges for $|z|<1$.
(b) The condition for

$$
S(z)=S_{1}(z)+S_{2}(z)=\frac{1}{1-z^{-1}}-\frac{1}{1-z}=\frac{1+z^{-1}}{1-z^{-1}}
$$

to converge is that $|z|>1$ and that $|z|<1$ simultaneously, which is not possible. Since there is no region of convergence for $S(z)$, the Z-transform of $s[n]$ does not exist.

Exercises Ch. 10 z-transform

Exercise 4

Z-transform and ROC

Given the anti-causal signal

$$
x[n]=-\alpha^{n} u[-n]
$$

(a) Determine the Z-transform $X(z)$, and carefully plot the ROC when $\alpha=0.5$ and $\alpha=2$. For which of the two values of α does $X\left(e^{j \omega}\right)$ exist?
(b) Find the signal that corresponds to the derivative $d X(z) / d z$. Express it in terms of α.

Exercises Ch. 10 z-transform

answer
Pr 9.4 (a) The signal $x[n]$ can be written as

$$
\begin{aligned}
x[n] & =-\delta[n]-\alpha^{-1} \delta[n+1]-\alpha^{-2} \delta[n+2]-\cdots \\
& =-\delta[n]-\frac{1}{\alpha} \delta[n+1]-\frac{1}{\alpha^{2}} \delta[n+2]-\cdots
\end{aligned}
$$

So that its Z-transform is given by

$$
\begin{aligned}
X(z) & =-1-\frac{z}{\alpha}-\frac{z^{2}}{\alpha^{2}}-\cdots \\
& =-\sum_{n=0}^{\infty}\left(\frac{z}{\alpha}\right)^{n}=-\frac{1}{1-z / \alpha}=\frac{\alpha z^{-1}}{1-\alpha z^{-1}} \quad|z|<|\alpha|
\end{aligned}
$$

If $\alpha=0.5$, the ROC is the interior of a circle of radius 0.5 , which does not include the unit circle. The ROC in this case indicates that the signal is non-causal. If $\alpha=2$, the ROC is the interior of a circle of radius 2 , including the unit circle, and indicating the signal is non-causal. In this case $X\left(e^{j \omega}\right)$ is defined, but it is not when $\alpha=0.5$.

Exercises Ch. 10 z-transform

(b) Computing the derivative of $X(z)$ with respect to z gives

$$
\begin{aligned}
\frac{d X(z)}{d z} & =-\frac{1}{\alpha}-\frac{2 z}{\alpha^{2}}-\frac{3 z^{2}}{\alpha^{3}} \cdots=-\sum_{n=1}^{\infty} n \frac{z^{n-1}}{\alpha^{n}} \\
& =\sum_{m=-\infty}^{-1} m \alpha^{m} z^{-(m+1)}
\end{aligned}
$$

by letting $m=-n$ in the last sum. Letting now $k=m+1$ in the final sum we have

$$
\frac{d X(z)}{d z}=\sum_{k=-\infty}^{0}(k-1) \alpha^{(k-1)} z^{-k}
$$

We thus have the pair

$$
\frac{d X(z)}{d z} \Leftrightarrow \quad(n-1) \alpha^{(n-1)} u[-n] .
$$

Writing $X(z)$ in positive powers of z, i.e., $X(z)=\alpha /(z-\alpha)$ its derivative with respect to z is

$$
\frac{d X(z)}{d z}=\frac{-\alpha}{(z-\alpha)^{2}}
$$

so that we have

$$
\frac{-\alpha}{(z-\alpha)^{2}}=\frac{-\alpha z^{-2}}{\left(1-\alpha z^{-1}\right)^{2}} \Leftrightarrow \quad(n-1) \alpha^{(n-1)} u[-n] .
$$

Exercises Ch. 10 z-transform

Exercise 5

Significance of ROC

Consider a causal signal $x_{1}[n]=u[n]$ and an anti-causal signal $x_{2}[n]=-u[-n-1]$.
(a) Find the Z-transforms $X_{1}(z)$ and $X_{2}(z)$ and carefully plot their ROCs. If the ROCs are not included with the Z-transforms, would you be able to tell which is the correct inverse? Explain.
(b) Determine if it is possible to find the Z-transform of $x_{1}[n]+x_{2}[n]$.

Exercises Ch. 10 z-transform

answer
Pr 9.5 (a) The Z-transform of $x_{1}[n]$ is

$$
X_{1}(z)=\frac{1}{1-z^{-1}} \quad|z|>1
$$

Using

$$
u[-n-1]= \begin{cases}1 & n \leq-1 \\ 0 & n \geq 0\end{cases}
$$

the Z-transform of $x_{2}[n]$ is

$$
\begin{aligned}
X_{2}(z) & =-\sum_{n=-\infty}^{-1} z^{-n} \\
& =-\sum_{m=0}^{\infty} z^{m}+1 \\
& =\frac{-1}{1-z}+1 \\
& =\frac{1}{1-z^{-1}} \quad|z|<1
\end{aligned}
$$

Exercises Ch. 10 z-transform

answer

where we changed the variable in the sum, $m=-n$, and started the sum at zero instead of 1 , and added 1 so it would not change. For $X_{2}(z)$ to exist, it is required that $|z|<1$.

If we ignore the regions of convergence, we would then have that $1 /\left(1-z^{-1}\right)$ would be the Z -transform of two completely different signals, $x_{1}[n]$ and $x_{2}[n]$, rendering the transformation as useless.
(b) For the Z-transform of $x_{1}[n]+x_{2}[n]$ to exist, requires that its ROC be the intersection of those of $X_{1}(z)$ and $X_{2}(z)$. The intersection of $|z|<1$ and $|z|>1$ is empty, so the Z-transform does not exist.

Exercises Ch. 10 z-transform

Exercise 6

Laplace and Z-transforms of sampled signals

An analog pulse $x(t)=u(t)-u(t-1)$ is sampled using a sampling period $T_{s}=0.1$.
(a) Obtain the discrete-time signal $x\left(n T_{s}\right)=\left.x(t)\right|_{t=n T_{s}}$ and plot it as a function of $n T_{s}$.
(b) If the sampled signal is represented as an analog signal as

$$
x_{s}(t)=\sum_{n=0}^{N-1} x\left(n T_{s}\right) \delta(t-n T s)
$$

determine the value of N in the above equation.
(c) Compute the Laplace transform of the sampled signal (i.e., $X_{s}(s)=\mathcal{L}\left[x_{s}(t]\right)$.
(d) Determine the Z-transform of $x\left(n T_{s}\right)$, or $X(z)$.
(e) Indicate how to transform $X_{s}(s)$ into $X(z)$

Exercises Ch. 10 z-transform

$\underline{\operatorname{Pr} 9.7}$ (a) If $T_{s}=0.1$ the discrete-time signal is

$$
x(0.1 n)=\left.[u(t)-u(t-1)]\right|_{t=0.1 n}=\left\{\begin{array}{cc}
1 & 0 \leq 0.1 n \leq 1 \text { or } 0 \leq n \leq 10 \\
0 & \text { otherwise }
\end{array}\right.
$$

(b) Expressing $x[n]$ as indicated, then $N=11$.
(c) The Laplace transform of the sampled signal is

$$
\begin{aligned}
X_{s}(s) & =\sum_{n=0}^{10} \mathcal{L}\left[\delta\left(t-n T_{s}\right)\right. \\
& =\sum_{n=0}^{10} e^{-0.1 n s} \\
& =\frac{1-e^{-1.1 s}}{1-e^{-0.1 s}}
\end{aligned}
$$

(d) The z-transform of the discrete-time signal is

$$
X(z)=\sum_{n=0}^{10} z^{-n}=\frac{1-z^{-11}}{1-z^{-1}}
$$

(e) To transform $X_{s}(s)$ into $X(z)$ we let $z=e^{0.1 s}$.

Exercises Ch. 10 z-transform

Exercise 7

Computation of Z-transform

A causal exponential $x(t)=2 e^{-2 t} u(t)$ is sampled using a sampling period $T_{s}=1$. The corresponding discrete-time signal is $x[n]=2 e^{-2 n} u[n]$.
(a) Express the discrete-time signal as $x[n]=2 \alpha^{n} u[n]$ and give the value of α.
(b) Find the Z-transform $X(z)$ of $x[n]$ and plot its poles and zeros in the z-plane.

Exercises Ch. 10 z-transform

answer
Pr 9.9 (a) The discrete-time signal $x[n]=2 e^{-2 n} u[n]$ can be equally written

$$
x[n]=2\left(e^{-2}\right)^{n}=2 \alpha^{n}
$$

or $\alpha=e^{-2}<1$.
(b) The z-transform of $x[n]$ is

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} 2 \alpha^{n} z^{-n} \\
& =\sum_{n=0}^{\infty} 2\left(\alpha z^{-1}\right)^{n} \\
& =\frac{2}{1-\alpha z^{-1}} \quad\left|\alpha z^{-1}\right|<1 \quad \text { or } \quad|z|>|\alpha|
\end{aligned}
$$

To find poles and zeros let

$$
X(z)=\frac{2 z}{z-\alpha}
$$

with zero $z=0$ and pole $z=\alpha$.

Exercises Ch. 10 z-transform

Exercise 8

Computation of Z-transform

Consider the signal $x[n]=0.5\left(1+[-1]^{n}\right) u[n]$.
(a) Plot $x[n]$ and use the definition of the Z-transform to obtain its Z-transform, $X(z)$.
(b) Use the linearity property and the Z-transforms of $u[n]$ and $[-1]^{n} u[n]$ to find the Z-transform $X(z)=$ $\mathcal{Z}[x[n]]$.
(c) Determine and plot the poles and the zeros of $X(z)$.

Exercises Ch. 10 z-transform

answer
Pr 9.10 (a) The given signal can also be written

$$
x[n]=\left\{\begin{array}{cc}
1 & n \geq 0 \text { and even } \\
0 & \text { otherwise }
\end{array}\right.
$$

(b) Using the above expression for $x[n]$, we have

$$
\begin{aligned}
X(z) & =\sum_{n=0, \text { even }}^{\infty} 1 z^{-n} \\
& =\sum_{m=0}^{\infty} 1 z^{-2 m}=\frac{1}{1-z^{-2}} \quad|z|>1
\end{aligned}
$$

where we let $n=2 m$ to find the final expression.

Exercises Ch. 10 z-transform

answer
(c) The z-transform of $x[n]$ is also obtained by using its linearity

$$
\begin{aligned}
X(z) & =0.5 \mathcal{Z}[u[n]]+0.5 \mathcal{Z}\left[(-1)^{n} u[n]\right] \\
& =\frac{1}{2\left(1-z^{-1}\right)}+0.5 \sum_{n=0}^{\infty}\left(-z^{-1}\right)^{n} \\
& =\frac{1}{2\left(1-z^{-1}\right)}+\frac{1}{2\left(1+z^{-1}\right)} \\
& =\frac{1}{1-z^{-2}} \quad\left|z^{-1}\right|<1 \text { or }|z|>1
\end{aligned}
$$

(c) To find the poles and zeros let

$$
X(z)=\frac{z^{2}}{z^{2}-1}
$$

with poles $z= \pm 1$, and zeros $z=0$, double.

Exercises Ch. 10 z-transform

Exercise 9

Solution of difference equations with Z-transform

Consider a system represented by the first-order difference equation

$$
\gamma[n]=x[n]-0.5 \gamma[n-1]
$$

where $\gamma[n]$ is the output and $x[n]$ is the input.
(a) Find the Z-transform $Y(z)$ in terms of $X(z)$ and the initial condition $\gamma[-1]$.
(b) Find an input $x[n] \neq 0$ and an initial condition $\gamma[-1] \neq 0$ so that the output is $\gamma[n]=0$ for $n \geq 0$. Verify you get this result by solving the difference equation recursively.
(c) For zero initial conditions, find the input $x[n]$ so that $\gamma[n]=\delta[n]+0.5 \delta[n-1]$.

Exercises Ch. 10 z-transform

Pr 9.11 (a) The Z-transform of the difference equation

$$
y[n]=x[n]-0.5 y[n-1] \quad n \geq 0
$$

with initial condition $y[-1]$ is

$$
Y(z)=X(z)-0.5\left(z^{-1} Y(z)+y[-1]\right)
$$

so that

$$
Y(z)=\frac{X(z)}{1+0.5 z^{-1}}-\frac{0.5 y[-1]}{1+0.5 z^{-1}}
$$

(b) If $X(z)=1, y[-1]=2$ then $Y(z)=0$ and therefore $y[n]=0$ for $n \geq 0$ but $y[-1]=2$.

If $X(z)=1$ or $x[n]=\delta[n]$ and $y[-1]=2$ the difference equation is

$$
y[n]=\delta[n]-0.5 y[n-1] \quad n \geq 0
$$

and can be solved recursively

$$
\begin{aligned}
& y[0]=1-0.5 \times 2=0 \\
& y[1]=0-0.5 \times 0=0 \\
& y[2]=0-0.5 \times 0=0
\end{aligned}
$$

Exercises Ch. 10 z-transform

answer
(c) If $y[-1]=0$ and $x[n]=\delta[n]$ then we can compute $y[n]=h[n]$, i.e., the impulse response. The corresponding transfer function is then from the equation for $Y(z)$:

$$
H(z)=\mathcal{Z}[h[n]]=\frac{Y(z)}{X(z)}=\frac{1}{1+0.5 z^{-1}}
$$

If we want $y[n]=\delta[n]+0.5 \delta[n-1]$ or $Y(z)=1+0.5 z^{-1}$ then

$$
X(z)=\frac{Y(z)}{H(z)}=\left(1+0.5 z^{-1}\right)^{2}=1+z^{-1}+0.25 z^{-2}
$$

which gives $x[n]=\delta[n]+\delta[n-1]+0.25 \delta(n-2)$

Exercises Ch. 10 z-transform

Exercise 10

Inverse Z-transform and poles and zeros
When finding the inverse Z-transform of functions with z^{-1} terms in the numerator, the fact that z^{-1} can be thought of as a delay operator can be used to simplify the computation. Consider

$$
X(z)=\frac{1-z^{-10}}{1-z^{-1}}
$$

(a) Use the Z-transform of $u[n]$ and the properties of the Z-transform to find $x[n]$.
(b) If we consider $X(z)$ a polynomial in negative powers of z, what would be its degree and the values of its coefficients?
(c) Find the poles and the zeros of $X(z)$ and plot them on the z-plane. Is there a pole or zero at $z=1$? Explain.

Exercises Ch. 10 z-transform

answer

Pr 9.14 (a) Writing $X(z)$ as

$$
X(z)=\frac{1}{1-z^{-1}}-\frac{z^{-10}}{1-z^{-1}}
$$

since the inverse Z-transform of the first term is $u[n]$, then the inverse of the second is $-u[n-10]$ given that z^{-10} indicates a delay of 10 samples. Thus,

$$
x[n]=u[n]-u[n-10]= \begin{cases}1 & 0 \leq n \leq 9 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Although $X(z)$ has been shown as a ratio of two polynomials, using the above representation of $x[n]$ its Z-transform is

$$
X(z)=1+z^{-1}+\cdots+z^{-9}
$$

i.e., a $9^{\text {th }}$-order polynomial in z^{-1}.
(c) We can rewrite $X(z)$ as

$$
X(z)=\frac{z^{10}-1}{z^{9}(z-1)}=\frac{(z-1) \prod_{k=1}^{9}\left(z-e^{j \pi k / 5}\right)}{z^{9}(z-1)}=\frac{\prod_{k=1}^{9}\left(z-e^{j \pi k / 5}\right)}{z^{9}}
$$

which is obtained by finding that the zeros of $X(z)$ are values $z_{k}^{10}=1$ or $z_{k}=e^{j 2 \pi k / 10}$ for $k=0, \cdots, 9$. For $k=0$ the zero is $z_{0}=1$, which cancels the pole at 1 .

Exercises Ch. 10 z-transform

Exercise 11

Initial conditions and impulse response

A second-order system has the difference equation

$$
\gamma[n]=0.25 \gamma[n-2]+x[n]
$$

where $x[n]$ is the input and $\gamma[n]$ is the output.
(a) Find the input $x[n]$ so that for zero initial conditions, the output is given as $\gamma[n]=0.5^{n} u[n]$.
(b) If $x[n]=\delta[n]+0.5 \delta[n-1]$ is the input to the above difference equation, find the impulse response of the system.

Exercises Ch. 10 z-transform

$\underline{\operatorname{Pr} 9.16}$ (a) For zero initial conditions we want

$$
Y(z)=\frac{X(z)}{1-0.25 z^{-2}}=\frac{1}{1-0.5 z^{-1}}
$$

which gives that

$$
X(z)=1+0.5 z^{-1} \Rightarrow x[n]=\delta[n]+0.5 \delta[n-1]
$$

(b) For $x[n]=\delta[n]+0.5 \delta[n-1]$ we get $Y(z)=H(z)\left(1+0.5 z^{-1}\right)$ which from the difference equation is equal to

$$
Y(z)=\frac{1+0.5 z^{-1}}{1-0.25 z^{-2}}
$$

so that when comparing them we find that

$$
H(z)=\frac{1+0.5 z^{-1}}{\left(1+0.5 z^{-1}\right)\left(1-0.25 z^{-2}\right)}=\frac{1}{1-0.25 z^{-2}}=\frac{1}{\left(1-0.5 z^{-1}\right)\left(1+0.5 z^{-1}\right)}
$$

with poles at ± 0.5 so that

$$
H(z)=\frac{A}{1+0.5 z^{-1}}+\frac{B}{1-0.5 z^{-1}}
$$

where

$$
\begin{aligned}
A & =\left.\frac{1}{1-0.5 z^{-1}}\right|_{z^{-1}=-2}=0.5 \\
B & =\left.\frac{1}{1+0.5 z^{-1}}\right|_{z^{-1}=2}=0.5
\end{aligned}
$$

so that

$$
h[n]=0.5(-0.5)^{n} u[n]+0.5^{n+1} u[n]
$$

Exercises Ch. 10 z-transform

Exercise 12

Convolution sum and product of polynomials

The convolution sum is a fast way to find the coefficients of the polynomial resulting from the multiplication of two polynomials.
(a) Suppose $x[n]=u[n]-u[n-3]$. Find its Z-transform $X(z)$, a second-order polynomial in z^{-1}.
(b) Multiply $X(z)$ by itself to get a new polynomial $Y(z)=X(z) X(z)=X^{2}(z)$. Find $Y(z)$.
(c) Graphically show the convolution of $x[n]$ with itself and verify that the result coincides with the coefficients of $Y(z)$.

Exercises Ch. 10 z-transform

answer
$\underline{\operatorname{Pr} 9.17}$ (a) The signal $x[n]=\delta[n]+\delta[n-1]+\delta[n-2]$ has a Z-transform

$$
X(z)=1+z^{-1}+z^{-2}
$$

(b) Then

$$
Y(z)=X^{2}(z)=\left(1+z^{-1}+z^{-2}\right)^{2}=1+2 z^{-1}+3 z^{-2}+2 z^{-3}+z^{-4}
$$

The convolution of the coefficients of $X(z)$, or $x[n]$, with themselves gives the sequence

$$
y[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2]+2 \delta[n-3]+\delta[n-4]
$$

The length of $y[n]$ is twice that of $x[n]$ minus one, or $2 \times 3-1=5$ so that $Y(z)$ is a fourth-degree polynomial.

Exercises Ch. 10 z-transform

Exercise 13

Inverse Z-transform

Find the inverse Z-transform of

$$
X(z)=\frac{8-4 z^{-1}}{z^{-2}+6 z^{-1}+8}
$$

and determine $x[n]$ as $n \rightarrow \infty$. Assume $x[n]$ is causal.

Exercises Ch. 10 z-transform

answer
Pr 9.18 Writing $X(z)$ using terms found in tables, its partial fraction expansion is

$$
\begin{aligned}
X(z) & =\frac{2-z^{-1}}{2\left(1+0.25 z^{-1}\right)\left(1+0.5 z^{-1}\right)} \\
& =\frac{A}{1+0.25 z^{-1}}+\frac{B}{1+0.5 z^{-1}}
\end{aligned}
$$

corresponding to the poles at -0.25 and -0.5 . The coefficients of the expansion are

$$
\begin{aligned}
A & =\left.\frac{2-z^{-1}}{2\left(1+0.5 z^{-1}\right)}\right|_{z^{-1}=-4}=-3 \\
B & =\left.\frac{2-z^{-1}}{2\left(1+0.25 z^{-1}\right)}\right|_{z^{-1}=-2}=4
\end{aligned}
$$

so that

$$
X(z)=\frac{-3}{1+0.25 z^{-1}}+\frac{4}{1+0.5 z^{-1}}
$$

and the inverse is

$$
x[n]=\left[-3(-0.25)^{n}+4(-0.5)^{n}\right] u[n]
$$

and in the steady-state it is zero.

Exercises Ch. 10 z-transform

Exercise 14

Z-transform properties and inverse transform

Sometimes the partial fraction expansion is not needed in finding the inverse Z-transform-instead the properties of the transform can be used. Consider the function

$$
F(z)=\frac{z+1}{z^{2}(z-1)}
$$

(a) Determine whether $F(z)$ is a proper rational function as a function of z and of z^{-1}.
(b) Verify that $F(z)$ can be written as

$$
F(z)=\frac{z^{-2}}{1-z^{-1}}+\frac{z^{-3}}{1-z^{-1}}
$$

Find the inverse Z-transform $f[n]$ using the above expression.

Exercises Ch. 10 z-transform

answer
Pr 9.19 (a) $F(z)$ is a proper rational function in positive powers of z as its numerator is of lower order than the denominator. If we convert it into negative powers, z^{-1}, we have

$$
F(z)=\frac{z^{-2}\left(1+z^{-1}\right)}{1-z^{-1}}
$$

which is not proper rational in z^{-1} as its numerator is of higher order than its denominator.
(b) Using the above expression we have that

$$
F(z)=\frac{z^{-2}}{1-z^{-1}}+\frac{z^{-3}}{1-z^{-1}}
$$

which gives

$$
f[n]=u[n-2]+u[n-3]
$$

given that $1 /\left(1-z^{-1}\right)$ is the Z-transform of $u[n]$ and z^{-2} and z^{-3} delay $u[n]$ by 2 and 3 samples.

Exercises Ch. 10 z-transform

Exercise 15

partial fraction expansion

(a) Find the inverse Z-transform of $a /\left(1-a z^{-1}\right)^{2}$.
(b) Suppose that the partial fraction expansion given by MATLAB is

$$
X(z)=\frac{-1}{1-0.5 z^{-1}}+\frac{1}{\left(1-0.5 z^{-1}\right)^{2}}
$$

Determine the inverse $x[n]$.

Exercises Ch. 10 z-transform

answer
$\underline{\operatorname{Pr} 9.23}$ (a) In the Z-transform table we find the pair

$$
n a^{n} u[n] \Leftrightarrow \frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}
$$

To obtain $a /\left(1-a z^{-1}\right)^{2}$ we multiply the above Z-transform by z, i.e., in the time-domain we advance the signal by one to get $(n+1) a^{n+1} u[n+1]=(n+1) a^{n+1} u[n]$, since at $n=-1$ we get that $n+1=0$. Thus the pair

$$
(n+1) a^{n+1} u[n] \Leftrightarrow \frac{a}{\left(1-a z^{-1}\right)^{2}}
$$

(b) The given $X(z)$ equals

$$
X(z)=\frac{-\left(1-0.5 z^{-1}\right)+1}{\left(1-0.5 z^{-1}\right)^{2}}=\frac{0.5 z^{-1}}{\left(1-0.5 z^{-1}\right)^{2}}
$$

which as indicated at the beginning of the previous part corresponds to $x[n]=0.5^{n} n u[n]$. From the partial expansion we have using the second pair

$$
x[n]=-0.5^{n} u[n]+2(n+1) 0.5^{(n+1)} u[n]=0.5^{n}(-1+2 \times 0.5(n+1)) u[n]=0.5^{n} n u[n]
$$

