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Chapter 12.6 Discrete-time filter structures (realizations)
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m FIR filters (direct form — tapped delay line)
m IR filters (direct form 1, 2)
m Cascade and parallel structure

m Transposition
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Minimal and canonical realizations

A structure which implements an N-th order transfer function is called
minimal if it uses exactly NV delay elements.

A canonical realization is a “textbook structure”, the typical structure
for a certain class of transfer functions (e.g. FIR, lIR, allpass, ---). It is
usually minimal, with also a minimal number of operations
(multiplications with coefficients).

Generally, each filter coefficient should appear only once in the
realization. This is important for zero-phase FIR filters,

H(Z) = by + blz_l + b12_2 + b()Z_3

and allpass filters,

H(z) a+az l+z72
Z) =
1+ 31271 + 32272
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Examples

x[n]

(@)

<3
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Hi(z) = (z7'a+b)(d +zte) +c
minimal; not canonical for FIR filters
(2nd order FIR requires only 3 coeff.)

x[n] —

Hy(z) = zfl(a +b)
ﬂ—% not minimal;

not canonical for FIR filters
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Transversal filter
An FIR filter can be realized using a transversal filter:

yIn] = box[n] + bix[n — 1] + - - - + byx[n — N]

m Minimal and canonical for the class of N-th order FIR filters:
N delays; N + 1 multipliers for N + 1 coefficients

m The coefficients h[n] = b, are directly used in the realization

m The transfer function is

H(z) = —by+ bzt + -+ byz N
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Recursive implementation of an FIR filter
An FIR filter can sometimes also be implemented recursively: e.g.,
M

1 1
o] = g 2o K= g (el Xl 1)l M)
can be written as
il =yln=1 + o (xlal — xln— M- 1)
o e s 2 e %ﬂl
‘ - — o yln]

(a) non-recursive

s iy

(b) recursive x[n] v M+1 4’@’””]
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Recursive filter: direct form no. 1
Realization for a general rational filter (IR, ap = 1):

B bo—l—blzfl—l-'--—i-bNZ*N

H(z) S E——— < y[n] = box[n] + -+ - + byx[n — N]
+ary[n—1] 4+ -+ apmy[n — M|
x[n] — -
bO bl b/\/
A\ U™ ‘ -

This is not a minimal structure: M + N delays instead of max(M, N).
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Recursive filter: direct form no. 2

Use the commutative property of the convolution: hy % hy = hy * h;.
We may reverse the order of both partial systems.

A,

v[n — 1] v[n]

x[n]

bel by bo

-- yln]

It is seen that the delay lines can be merged (they transport the same
signal v[n])
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Recursive filter: direct form no. 2 (cont'd)
The resulting filter (minimal and canonical):

x[n]

m Also in this realization the filter coefficients are directly related to the
parameters in the difference equation.

m This realization is very sensitive to small disturbances (quantization)
of the coefficients: the poles/zeros can move a lot. [See EE2S31]
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Cascade structure

X(z) —| Hi(2) Hx(z) }---- » Hi(z) |---- » Hk(z) — Y(2)

(1-zz Y1 - z;("z_l)

H(z) = () Ho(2) - Hi(2), e Hhl2) = G ey o

m Usually second order sections: less sensitive.

Second order sections are needed for a canonical realization of
transfer functions with real-valued coefficients.

m Used if the Hi(z) all have the same passband (otherwise, large gains
are needed).
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Parallel structure

X(Z) Ho = > Y(Z)
A H(z) _
H1(Z)+H2(Z)+"'+HK(Z)
A g Hi(z) =
hle) | = Akk(Z) Al

1—pz7t  1—piz71t
(2nd order section for
complex conj. poles)

l—’HK(Z)"

m Less control over the location of zeros.
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Example

(1 o ej7r/4zfl)(1 o efjﬂ'/4zfl)(1 o ej37r/4zfl)(1 o efj37'r/4zfl)

H(z)=6 (1-0.9271)(140.9z71)(1 - 0.9/ z71)(1+0.9jz 1)

There are several possibilities to split this into 2nd order sections with
real-valued coefficients. For a cascade, we can also choose which pair of
zeros we combine with which pair of poles. With infinite accuracy (no
quantization) this does not make a difference.

b
P
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Example (cont'd)

(1— ez 1) (1 — e Im/4z71) o 1- 2zl 4 772

Hi(z) = —
1(2) (1-0.9z1)(1+0.9z1) 1-08lz2
HZ(Z) _ (1 o ej37r/4z—1)(1 o e—3j7r/4z—1) B 1+ \/52_1 + 72

(1-0.9/z1)(1+09/z1) 1+0.81z2
x[n] p—=y[n]

—0.81
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Transposition

Proposition: Given a realization (graph/network with nodes and edges).
Make the following changes:

@ Reverse the direction of every edge (adders <> nodes)
® Reverse input and output

The transfer function is not changed (cf. Tellegen's theorem).

bz 1

Examp|e: H(Z) — W
— abz

X[n] —=4 : ylnl  y[n]=— x[n]
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Application to direct form no. 2

x[n]

x[n]

bO by bN

yln]

Advantage: a much shorter critical path (all adders can operate in
parallel).
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