EE2S11 Signals and Systems

Chapter 10: The z-transform

Alle-Jan van der Veen

8 January 2024

Contents

- definition of the z-transform
- region of convergence
- convolution property, transfer function
- causality and stability
- inverse z-transform

Skip sections 10.5.3, 10.6, 10.7

The Laplace transform for sampled sequences

Suppose that we have a sampled signal:

$$
x_{s}(t)=\sum x[n] \delta\left(t-n T_{s}\right), \quad x[n]:=x\left(n T_{s}\right)
$$

The Laplace transform $\mathcal{L}\left\{x_{s}(t)\right\}$ is
$X_{s}(s)=\sum x[n] \mathcal{L}\left\{\delta\left(t-n T_{s}\right)\right\}=\sum x[n] e^{-s T_{s} n}=\sum x[n] z^{-n}$
where $z:=e^{s T_{s}}$.

- For $s=j \Omega$ we obtain $z=e^{j \Omega T_{s}}=e^{j \omega}$, with $\omega=\Omega T_{s}$.

■ More generally: $s=\sigma+j \Omega$ becomes $z=e^{\sigma T_{s}} e^{j \Omega T_{s}}=r e^{j \omega}$.

Aliasing

The mapping $s \rightarrow z=e^{s T_{s}}$ is not one-to-one.
For a given $z=e^{j \omega}$ we can take $-\pi \leq \omega \leq \pi$, this corresponds to $-\frac{\pi}{T_{s}} \leq \Omega \leq \frac{\pi}{T_{s}}$: the fundamental interval.
Complex numbers $s=j \Omega$ with Ω outside this interval are mapped onto the same z. Left half-plane is mapped to the inside of the unit circle.

The z-transform

From now on, we will work with z and apply this transform to time series, even if there is no connection to continuous-time signals.

The (two-sided) z-transform of a time series $x[n]$ is defined as

$$
X(z)=\mathcal{Z}(x[n]):=\sum_{n=-\infty}^{\infty} x[n] z^{-n}, \quad z \in \mathrm{ROC}
$$

We also need to indicate the region of convergence (ROC).
For example:

$$
\begin{aligned}
x= & {[\cdots, 0,1,2,3,4,5,0, \cdots] } \\
\Rightarrow \quad X(z)= & z^{2}+2 z^{1}+3+4 z^{-1}+5 z^{-2} \\
& \operatorname{ROC}: z \in \mathbb{C} \backslash\{0, \infty\}
\end{aligned}
$$

Exercise

Determine the z-transform (and ROC) of the exponential series:

Exercise

Determine the z-transform (and ROC) of the exponential series:

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} a^{n} z^{-n}=1+a z^{-1}+a^{2} z^{-2}+\cdots \\
& =\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
\end{aligned}
$$

ROC: $\left|a z^{-1}\right|<1$, hence $|z|>a$

Delay

$$
\begin{aligned}
x[n] & \Leftrightarrow X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
x[n-k] & \Leftrightarrow \sum_{n=0}^{\infty} x[n-k] z^{-n} \\
& =\sum_{n=-\infty}^{\infty} x[n-k] z^{-(n-k)} z^{-k} \\
& =z^{-k} X(z)
\end{aligned}
$$

A unit delay corresponds to multiplication by z^{-1}.

The z-transform

A few properties:

$$
\begin{array}{lll}
a x[n]+b y[n] & \Leftrightarrow a X(z)+b Y(z) & \\
x[n-k] & \Leftrightarrow z^{-k} X(z) & \\
a^{n} \times[n] & \Leftrightarrow X\left(\frac{z}{a}\right) & \\
x[-n] & \Leftrightarrow X\left(z^{-1}\right) & \\
& \Leftrightarrow X(z)=1 & \text { ROC }: z \in \mathbb{C} \\
x[n]=\delta[n] & \Leftrightarrow X(z)=\frac{1}{1-z^{-1}} & \text { ROC: }|z|>1
\end{array}
$$

See Chaparro p.589-590 for tables and more properties.

Region of convergence

The region of convergence (ROC) of the z-transform of a signal $x[n]$ contains those values of z for which the summation converges.
With $z=r e^{j \omega}$ we find

$$
\mathrm{ROC}: \quad|X(z)|=\left|\sum x[n] z^{-n}\right| \leq \sum|x[n]| r^{-n}<\infty
$$

- The ROC is the area where $|X(z)|<\infty$, this depends on r but not on ω. Hence, the ROC is limited by circles.
- $X(z)$ and the ROC together uniquely determine $x[n]$.
- Poles p_{k} are the locations where $X\left(p_{k}\right) \rightarrow \infty$: these are never in the ROC.
Zeros z_{k} are the locations where $X\left(z_{k}\right)=0$.

Example

- Determine the poles and zeros of

$$
X(z)=1+2 z^{-1}=\frac{z+2}{z}
$$

Answer: 1 pole at $z=0 ; 1$ zero at $z=-2$.

- Same for

$$
X(z)=\frac{1+2 z^{-1}}{1+z^{-2}}=\frac{z(z+2)}{z^{2}+1}
$$

Answer: poles at $z= \pm j ; 1$ zero at $z=-2,1$ zero at $z=0$.

Theory says that for rational functions, the number of poles equals the number of zeros (also taking into account those at $z=0$ and $z=\infty$). If $X(z)$ is a rational function with real-valued coefficients, then the complex poles and zeros appear in conjugated pairs: if p_{k} is a complex pole, then so is p_{k}^{*}.

ROC for a finite sequence

If $x[n]=0$ outside an interval $-\infty<N_{0} \leq n \leq N_{1}<\infty$, i.e.

$$
X(z)=x\left[N_{0}\right] z^{-N_{0}}+\cdots+x\left[N_{1}\right] z^{-N_{1}}
$$

then the sum has a finite number of terms, and the ROC is all of \mathbb{C}, except perpaps at $z=0$ or $|z|=\infty$:

$$
\begin{array}{ll}
0, & \text { if } N_{1} \geq 0, \quad \text { e.g.: } X(z)=z+1+z^{-1} \\
\infty, & \text { if } N_{0} \leq 0
\end{array}
$$

ROC of an infinite sequence

Split the sequence $x[n]$ into the sum of a causal and an anti-causal term, and use the linearity of the z-transform.

- The causal part $X_{c}(z)$ has ROC containing $|z|=\infty$, therefore it is $|z|>R_{1}$, the largest radius of the poles.
- The anti-causal part $X_{a c}(z)$ has ROC containing $z=0$, therefore it is $|z|<R_{2}$, the smallest radius of the poles.
- Hence, the ROC of $X(z)$ is the intersection: $R_{1}<|z|<R_{2}$. All poles are outside the ROC.

Example

- Causal signal: consider

$$
x_{1}[n]=\left(\frac{1}{2}\right)^{n} u[n] \quad \Leftrightarrow \quad X_{1}(z)=\sum_{n=0}^{\infty}\left(\frac{1}{2} z^{-1}\right)^{n}=\frac{1}{1-\frac{1}{2} z^{-1}}=\frac{z}{z-\frac{1}{2}}
$$

ROC: $|z|>\frac{1}{2}$

Example

- Anti-causal signal: consider

$$
\begin{aligned}
& x_{2}[n]=-\left(\frac{1}{2}\right)^{n} u[-n-1] \\
& X_{2}(z)=-\sum_{n=-\infty}^{-1}\left(\frac{1}{2}\right)^{n} z^{-n}=-\sum_{m=0}^{\infty}(2 z)^{m}+1=\frac{-1}{1-2 z}+1=\frac{z}{z-\frac{1}{2}}
\end{aligned}
$$

ROC: $|z|<\frac{1}{2}$

The same $X(z)$ corresponds to different $x[n]$ depending on the ROC.

Example

Compute the z-transform of the two-sided signal:

$$
x[n]=\left(\frac{1}{2}\right)^{|n|}
$$

- For the causal part ($n \geq 0$) we find:

$$
x_{c}[n]=\left(\frac{1}{2}\right)^{n} u[n] \Leftrightarrow X_{c}(z)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n}=\frac{1}{1-\frac{1}{2} z^{-1}}=\frac{z}{z-\frac{1}{2}},
$$

ROC: $|z|>\frac{1}{2}$

- For the anti-causal part $(n \leq 0)$:

$$
x_{a c}[n]=\left(\frac{1}{2}\right)^{-n} u[-n] \Leftrightarrow X_{a c}(z)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} z^{n}=\frac{1}{1-\frac{1}{2} z}
$$

ROC: $|z|<2$

Example (cont'd)

- For $x[n]$ we find

$$
X(z)=\frac{z}{z-\frac{1}{2}}+\frac{1}{1-\frac{1}{2} z}-1=\frac{z}{z-\frac{1}{2}}-\frac{z}{z-2}=\frac{-1 \frac{1}{2} z}{\left(z-\frac{1}{2}\right)(z-2)}
$$

with ROC: $\frac{1}{2}<|z|<2$.

Exponential signals

$$
x[n]=a^{n} u[n] \quad \Leftrightarrow \quad X(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}, \quad \text { ROC: }|z|>a
$$

Pole at $z=a$, zero at $z=0$.

Exponential signals

Harmonic (exponentially damped) signals

$$
\begin{aligned}
x[n] & =r^{n} \cos \left(\omega_{0} n+\theta\right) u[n]=\left[\frac{e^{j \theta}}{2} r^{n} e^{j \omega_{0} n}+\frac{e^{-j \theta}}{2} r^{n} e^{-j \omega_{0} n}\right] u[n] \\
& =\left[\gamma \alpha^{n}+\gamma^{*}\left(\alpha^{*}\right)^{n}\right] u[n]
\end{aligned}
$$

with $\alpha=r \mathrm{e}^{j \omega_{0}}$ and $\gamma=\frac{e^{j \theta}}{2}$ both complex.
$X(z)=\frac{\gamma z}{z-\alpha}+\frac{\gamma^{*} z}{z-\alpha^{*}}=\cdots=\frac{z\left(z \cos (\theta)-r \cos \left(\omega_{0}-\theta\right)\right)}{\left(z-r e^{j \omega_{0}}\right)\left(z-r e^{-j \omega_{0}}\right)}$, ROC: $|z|>\mid \alpha$
This is a second-order rational function with real-valued coefficients.

- Poles at $z=r e^{j \omega_{0}}$ and $z=r e^{-j \omega_{0}}$.

Special case: $r=1$, now $x[n]$ is an undamped (causal) sinusoid, with its two poles on the unit circle.
■ Zeros at $z=0$ and $z=\frac{r \cos \left(\omega_{0}-\theta\right)}{\cos (\theta)}$.

Harmonic signals

■ $r=1, \omega_{0}=1, \theta=0$

- $r=1, \omega_{0}=0$ (one pole and zero cancel each other)
- $r=0.5, \omega_{0}=1$

Double poles

For a causal $x[n]$:

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} x[n] z^{-n} \\
\frac{\mathrm{~d} X(z)}{\mathrm{d} z} & =\sum_{n=0}^{\infty} x[n] \frac{\mathrm{d} z^{-n}}{\mathrm{~d} z}=-z^{-1} \sum_{n=0}^{\infty} n x[n] z^{-n}
\end{aligned}
$$

Hence

$$
n x[n] u[n] \quad \Leftrightarrow \quad-z \frac{\mathrm{~d} X(z)}{\mathrm{d} z}
$$

Taking a derivative often leads to double poles.

Example

Taking $x[n]=\alpha^{n} u[n]$ so that $X(z)=\frac{z}{z-\alpha}$, then

$$
n \alpha^{n} u[n] \quad \Leftrightarrow \quad \frac{\alpha z}{(z-\alpha)^{2}}
$$

Double pole at $z=\alpha$, zero at $z=0$ and $z=\infty$.

The transfer function

Consider an LTI system \mathcal{S} with impulse response $h[n]$. Earlier we found

$$
y[n]=h[n] * x[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Define

$$
H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n}
$$

Then

$$
\begin{aligned}
Y(z) & =\sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k] h[n-k] z^{-n} \\
& =\sum_{k=-\infty}^{\infty} x[k] \sum_{n=-\infty}^{\infty} h[n-k] z^{-n} \\
& =\sum_{k=-\infty}^{\infty} x[k] z^{-k} H(z)=H(z) X(z)
\end{aligned}
$$

Computing the convolution

Given $x[n]=[1,2,0, \cdots]$ and $h[n]=[3,2,4,0, \cdots]$.
Compute $y[n]=x[n] * h[n]=\sum_{k=0}^{\infty} x[k] h[n-k]$:

$$
\begin{array}{lrrrrr}
x[0] h[n]: & 3 & 2 & 4 & 0 & 0 \cdots \\
x[1] h[n-1]: & 0 & 2 \cdot 3 & 2 \cdot 2 & 2 \cdot 4 & 0 \cdots \\
\hline y[n]: & 3 & 8 & 8 & 8 & 0 \cdots
\end{array}
$$

Alternatively, compute using $Y(z)=X(z) H(z)$:

$$
\begin{aligned}
Y(z) & =\left(1+2 z^{-1}\right)\left(3+2 z^{-1}+4 z^{-2}\right) \\
& =\left(3+2 z^{-1}+4 z^{-2}\right)+2 z^{-1}\left(3+2 z^{-1}+4 z^{-2}\right) \\
& =3+(2+2 \cdot 3) z^{-1}+(4+2 \cdot 2) z^{-2}+(2 \cdot 4) z^{-3} \\
& =3+8 z^{-1}+8 z^{-2}+8 z^{-3}
\end{aligned}
$$

Lineair difference equations

The equivalent of a differential equation in discrete time is a linear difference equation, e.g.
$y[n]+a_{1} y[n-1]+\cdots+a_{N} y[n-N]=b_{0} x[n]+b_{1} x[n-1]=\cdots+b_{M} x[n-M]$
Take left and right the z-transform:

$$
Y(z) \underbrace{\left(1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}\right)}_{A(z)}=X(z) \underbrace{\left(b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}\right)}_{B(z)}
$$

Therefore,

$$
H(z):=\frac{Y(z)}{X(z)}=\frac{B(z)}{A(z)}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
$$

$H(z)$ is a rational transfer function.

Realizations

$$
\begin{aligned}
& x[n] \longrightarrow \mathcal{D} \longrightarrow y[n]=x[n-1] \\
& X(z) \longrightarrow z^{-1} \longrightarrow Y(z)=z^{-1} X(z)
\end{aligned}
$$

- The delay-element is a memory (clocked D-flip-flop): It shows at the output what was the input at the previous clock cycle.

■ Block schemes ("realizations") consist of delays, multipliers and adders.
In block schemes, \mathcal{D} is usually written as z^{-1}. Therefore, $x[n]$ and $X(z)$ are often interchangeably used in block schemes.

- The impulse response $h[n]$ follows for $n=1,2, \cdots$ by inserting an input signal $x[n]=\delta[n]$ into the realization, and recursively computing the signals in the scheme sample by sample (assuming initial conditions of the delays are zero).

Realizations

A rational transfer function $H(z)$ corresponds to a realization using delays, multipliers and adders.
Examples:
■ $H(z)=1+b z^{-1} \quad \Rightarrow \quad h[n]=\delta[n]+b \delta[n-1]$

Insert $x[n]=\delta[n]$ to find $h[n]$. Insert $X(z)=1$ to find $H(z)$.

Realizations

- $H(z)=\frac{z}{z-a}=\frac{1}{1-a z^{-1}}=1+a z^{-1}+a^{2} z^{-2}+\cdots$, ROC: $|z|>a$ $h[n]=a^{n} u[n]$
- Derivation of a realization:

$$
\begin{aligned}
& Y(z)=H(z) X(z) \Rightarrow Y(z)\left(1-a z^{-1}\right)=X(z) \Rightarrow \\
& Y(z)=X(z)+a z^{-1} Y(z)
\end{aligned}
$$

Exercise

Determine the transfer function of the following system:

Exercise

Determine the transfer function of the following system:

$$
\begin{gathered}
\left\{\begin{array}{c}
Y(z)=2 X(z)+0.5 Q(z) \\
Q(z)=z^{-1} Y(z)+z^{-1} X(z)
\end{array}\right. \\
Y(z)=2 X(z)+0.5\left[z^{-1} Y(z)+z^{-1} X(z)\right] \\
\left(1-0.5 z^{-1}\right) Y(z)=\left(2+0.5 z^{-1}\right) X(z) \\
H(z)=\frac{Y(z)}{X(z)}=\frac{2+0.5 z^{-1}}{1-0.5 z^{-1}}=\frac{2 z+0.5}{z-0.5} \quad \text { ROC }:|z|>0.5
\end{gathered}
$$

Causality

For a causal LTI system, we have $h[n]=0, n<0$.

$$
H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n}=\sum_{n=0}^{\infty} h[n] z^{-n}
$$

Hence, an LTI system is causal iff the ROC of $H(z)$ contains the outside of a circle, including $z=\infty$.

Stability

Earlier: A system is BIBO stable iff $\sum_{n=-\infty}^{\infty}|h[n]|<\infty$.
Note:

$$
|H(z)| \leq \sum\left|h[n] z^{-n}\right|=\sum|h[n]|\left|z^{-n}\right|
$$

On the unit circle, a BIBO stable system satisfies: $|H(z)|<\infty$: the unit circle is contained in the ROC.

- An FIR system is always BIBO stable (finite sum).
- A causal and stable LTI system has $H(z)$ with ROC containing the unit circle and its outside: $|z| \geq 1$.
All poles are strictly inside the unit circle.

Example

- $a=0.5 \quad \Rightarrow \quad H(z)=\frac{1}{1-0.5 z^{-1}}=1+0.5 z^{-1}+0.25 z^{-2}+\cdots$

ROC: $|z|>0.5$, causal and stable

- $a=2 \Rightarrow H(z)=\frac{1}{1-2 z^{-1}}=1+2 z^{-1}+4 z^{-2}+\cdots$

ROC: $|z|>2$, causal but non-stable

- $H(z)=\frac{1}{1-2 z^{-1}}=-\frac{0.5 z}{1-0.5 z}=-0.5 z-0.25 z^{2}-0.125 z^{3}-\cdots$

ROC: $|z|<2$, non-causal but stable.
This series (impulse response) does not correspond to the realization (which is causal by construction).

Conclusions

- A causal stable system has all poles within the unit circle. The ROC contains at least the unit circle and the area outside it.
- Along with $H(z)$, we also must indicate the ROC.

■ Often the ROC is omitted. In that case, depending on the situation, assume either

- the system is stable: the unit circle is within the ROC
- the system is causal: ROC contains infinity.

Initial value and final value

If $x[n]$ is causal, then
Initial value: $x[0]=\lim _{z \rightarrow \infty} X(z)$
Final value: $\quad \lim _{n \rightarrow \infty} x[n]=\lim _{z \rightarrow 1}(z-1) X(z) \quad$ (if $\left.\operatorname{ROC} \supset\{|z| \geq 1\} \backslash\{1\}\right)$.

Proof:

- $\lim _{z \rightarrow \infty} X(z)=\lim _{z \rightarrow \infty} \sum_{n=0}^{\infty} x[n] z^{-n}=x[0]$
- $\lim _{z \rightarrow 1}(z-1) X(z)=\lim _{z \rightarrow 1} x[0] z+\sum_{n=0}^{\infty}(x[n+1]-x[n]) z^{-n}$

$$
\begin{aligned}
& =x[0]+\sum_{n=0}^{\infty}(x[n+1]-x[n]) \\
& =\lim _{n \rightarrow \infty} x[n]
\end{aligned}
$$

The properties can be used to check the correctness of a computed $x[n]$.

Examples

$\square X(z)=1 \quad \Rightarrow \quad x[n]=\delta[n]$.
Initial value: $\lim _{z \rightarrow \infty} 1=1$. Final value: $\lim _{z \rightarrow 1}(z-1) \cdot 1=0$

- $X(z)=\frac{1}{1-z^{-1}} \quad \Rightarrow \quad x[n]=u[n]$.

Initial value: $\lim _{z \rightarrow \infty} \frac{1}{1-z^{-1}}=1$.
Final value: $\lim _{z \rightarrow 1} \frac{z-1}{1-z^{-1}}=\lim _{z \rightarrow 1} z=1$.
■ $X(z)=\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}} \quad \Rightarrow \quad x[n]=n u[n]$.
Initial value: $\lim _{z \rightarrow \infty} \frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}=0$.
Final value: $\lim _{z \rightarrow 1} \frac{(z-1) z^{-1}}{\left(1-z^{-1}\right)^{2}}=\lim _{z \rightarrow 1} \frac{1}{1-z^{-1}}=\infty$.

Inverse z-transform

Given $X(z)$ and its ROC. The inverse z-transform is

$$
x[n]=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n} \frac{\mathrm{~d} z}{z}
$$

with the contour integral following a counterclockwise closed path in the ROC encircling the origin. This follows from applying the residue theorem to the Laurent series $X(z)=\sum_{n} x[n] z^{-n}$.

The formula is almost never used except in theoretical derivations. We won't use it in this course.

The integral is solved using the residue theorem.

Inverse z-transform

Given $X(z)$ for a causal signal (ROC: $|z|>R$), how can $x[n]$ be obtained?

■ Use the inverse z-transform. General technique but often rather complicated.

- Expansion into a power series of z^{n} (by long division)

$$
\begin{aligned}
X(z) & =x[0]+x[1] z^{-1}+x[2] z^{-2}+\cdots \\
\Leftrightarrow \quad x[n] & =x[0] \delta[n]+x[1] \delta[n-1]+x[2] \delta[n-2]+\cdots
\end{aligned}
$$

Useful if only a few terms ($x[0], x[1], \cdots)$ are needed.
■ Partial fraction expansion, then transforming each term separately (using a table).

Partial fraction expansion

$$
X(z)=\frac{B(z)}{A(z)}
$$

- Write as function of z^{-1}.
- Ensure that the degree of $B(z)$ is smaller than that of $A(z)$ ("proper rational function"). If necessary, start by splitting off a polynomial, (in z^{-1}), e.g.,

$$
X(z)=b_{0}+b_{1} z^{-1}+\frac{B^{\prime}(z)}{A(z)}
$$

- Determine the poles (i.e. the zeros of $A(z)$). If none of the poles is repeated, then the partial fraction expansion has the form

$$
\begin{gathered}
X(z)=b_{0}+b_{1} z^{-1}+\sum \frac{A_{k}}{1-\alpha_{k} z^{-1}} \\
x[n]=b_{0} \delta[n]+b_{1} \delta[n-1]+\sum A_{k} \alpha_{k}^{n} u[n]
\end{gathered}
$$

Partial fraction expansion

- In the case of double poles, we use

$$
X(z)=\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}} \quad \Leftrightarrow \quad x[n]=n a^{n} u[n]
$$

Example

$$
X(z)=\frac{2+z^{-2}}{1+2 z^{-1}+z^{-2}}, \quad \mathrm{ROC}:|z|>1
$$

- (Write as function of z^{-1}, already the case here.)

■ Make "proper"

$$
X(z)=1+\frac{1-2 z^{-1}}{1+2 z^{-1}+z^{-2}}
$$

- The poles are $z=-1$ (twice)

$$
X(z)=1+\frac{1-2 z^{-1}}{\left(1+z^{-1}\right)^{2}}=1+\frac{A}{1+z^{-1}}+\frac{B z^{-1}}{\left(1+z^{-1}\right)^{2}}
$$

with $A=1$ and $B=-3$. Hence

$$
x[n]=\delta[n]+(-1)^{n} u[n]+3 n(-1)^{n} u[n]
$$

Partial fraction expansion

If $X(z)$ has as ROC the inside of a circle, $|z|<R$, then $x[n]$ is anti-causal.

- Write $X(z)$ as function of z.
- Make proper and form partial fraction decomposition as before. Use tables to find the inverse. Example:

$$
\begin{gathered}
X(z)=b_{0}+b_{1} z+\sum \frac{A_{k}}{1-\alpha_{k} z} \\
x[n]=b_{0} \delta[n]+b_{1} \delta[n+1]+\sum A_{k} \alpha_{k}^{-n} u[-n]
\end{gathered}
$$

Partial fraction expansion

If $X(z)$ has as ROC a ring (donut-shape), then $x[n]$ has mixed causality.

- Determine the poles
- The poles inside the ring correspond to causal terms

The poles outside the ring correspond to anti-causal terms

Exercise (trial exam 2016)

Given

$$
X(z)=\frac{1}{1-1 \frac{1}{2} z^{-1}+\frac{1}{2} z^{-2}}, \quad z \in \mathrm{ROC}
$$

determine $x[n]$ using the inverse z-transform if (i) ROC: $|z|>1$, (ii) ROC: $|z|<\frac{1}{2}$, (iii) ROC: $\frac{1}{2}<|z|<1$.

Exercise (trial exam 2016)

Given

$$
X(z)=\frac{1}{1-1 \frac{1}{2} z^{-1}+\frac{1}{2} z^{-2}}, \quad z \in \mathrm{ROC}
$$

determine $x[n]$ using the inverse z-transform if (i) ROC: $|z|>1$, (ii) ROC: $|z|<\frac{1}{2}$, (iii) ROC: $\frac{1}{2}<|z|<1$.

First write this in terms of z^{-1} (already done), make it 'proper' (already done), then split (partial fraction expansion).

$$
X(z)=\frac{1}{1-1 \frac{1}{2} z^{-1}+\frac{1}{2} z^{-2}}=\frac{2}{1-z^{-1}}-\frac{1}{1-\frac{1}{2} z^{-1}}
$$

Exercise (cont'd)

i) The region of convergence runs until $z \rightarrow \infty$: causal response. Hence

$$
x[n]=2 u[n]-\left(\frac{1}{2}\right)^{n} u[n]
$$

ii) The region of convergence includes $z=0$: anti-causal reponse. Rewrite $X(z)$ as

$$
X(z)=-\frac{2 z}{1-z}+\frac{2 z}{1-2 z}
$$

The inverse z-transform of $\frac{1}{1-z}$ is $u[-n]$ and of $\frac{1}{1-2 z}$ is $2^{-n} u[-n]$, while multiplication with z is equivalent to an 'advance', so that

$$
x[n]=-2 u[-n-1]+2 \cdot 2^{-n-1} u[-n-1]
$$

Exercise (cont'd)

iii) Rewrite $X(z)$ as

$$
X(z)=-\frac{2 z}{1-z}-\frac{1}{1-\frac{1}{2} z^{-1}}
$$

For this ROC, the first term results in an anti-causal response (pole at the outside of the ROC), while the second term results in a causal response (pole at the inside of the ROC). Hence,

$$
x[n]=-2 u[-n-1]-\left(\frac{1}{2}\right)^{n} u[n]
$$

