EE2S11 Signals and Systems Chapter 5.7: Basics of Filtering

Alle-Jan van der Veen

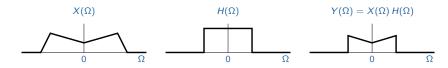
_

18 December 2023

Basics of filtering

Recall

$$y(t) = x(t) * h(t)$$
 \Leftrightarrow $Y(\Omega) = X(\Omega) H(\Omega)$



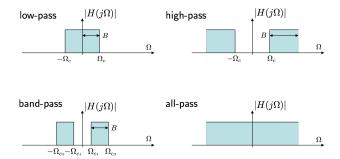
In signal processing, x(t) is an input signal, y(t) is an output signal, and $H(\Omega)$ the frequency response of a filter.

We consider rational filters, with transfer functions as

$$H(s) = \frac{B(s)}{A(s)} = \frac{\text{some polynomial}}{\text{another polynomial}}$$

Filter design: find H(s) to satisfy certain specifications, such as

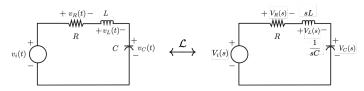
- Flat frequency response in the pass band
- Sufficient suppression in the stop band



These ideal filters cannot be realized...

Example: second-order RCL circuit

This (passive) circuit can generate many second-order rational filters:



(zero initial conditions)

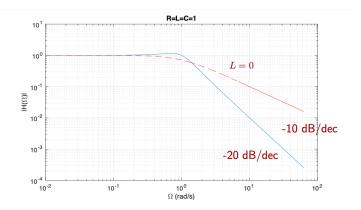
$$V_i(s) = V_R(s) + V_L(s) + V_C(s)$$

Example Voltage across the capacitor:

$$V_c(s) = \frac{V_i(s)}{s^2 LC + sRC + 1}$$
 \Rightarrow $H(s) = \frac{1}{s^2 LC + sRC + 1}$

The amplitude response is

$$|H(j\Omega)|^2 = \frac{1}{(1 - \Omega^2 LC)^2 + (\Omega RC)^2}$$



This is a second-order lowpass filter.

Similarly:

Voltage across the inductor:

$$H(s) = \frac{s^2 LC}{s^2 LC + sRC + 1}$$

Voltage across the resistor:

$$H(s) = \frac{sRC}{s^2LC + sRC + 1}$$

Voltage across the inductor and capacitor:

$$H(s) = \frac{s^2LC + 1}{s^2LC + sRC + 1}$$

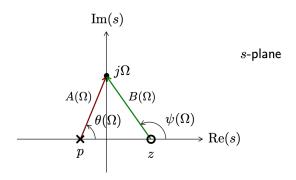
What types of filters are these?

Consider a first-order rational transfer function

$$H(s) = \frac{s-z}{s-p}$$

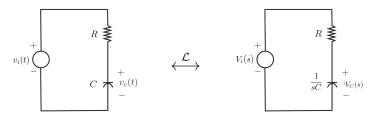
Frequency response:

$$H(\Omega) = \frac{j\Omega - z}{j\Omega - p} = \underbrace{\frac{|j\Omega - z|}{|j\Omega - p|}}_{|H(j\Omega)|} \underbrace{e^{j(\angle(j\Omega - z) - \angle(j\Omega - p))}}_{e^{j\angle H(j\Omega)}}$$



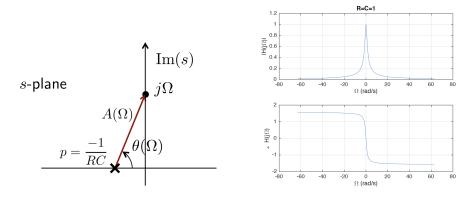
$$|H(j\Omega)| = \frac{B(\Omega)}{A(\Omega)}$$
 $\angle H(j\Omega) = \psi(\Omega) - \theta(\Omega)$

Example: first-order RC circuit



$$H(s) = \frac{V_c(s)}{V_i(s)} = \frac{1}{1 + sRC} = \frac{(RC)^{-1}}{(RC)^{-1} + s}$$

- One zero at ∞
- One pole at $-\frac{1}{RC}$



This is a first-order lowpass filter. Close to the pole, the response will peak, and the phase changes quickly. Far away, the response slowly goes to zero.

More general:

$$H(s) = \frac{b_0 + b_1 s + \dots + b_M s^M}{a_0 + a_1 s + \dots + a_N s^N} = \frac{b_M}{a_N} \frac{\prod_{k=1}^M (s - z_k)}{\prod_{k=1}^N (s - p_k)}$$

Write $s = j\Omega$ and express the complex-valued factors in polar form as

$$j\Omega - z_k = B_k(\Omega)e^{j\psi_k(\Omega)}, \qquad j\Omega - p_k = A_k(\Omega)e^{j\theta_k(\Omega)}$$

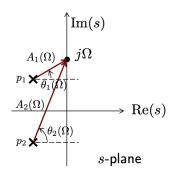
Frequency response:

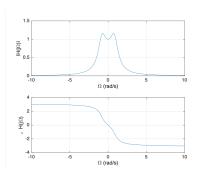
$$|H(\Omega)| = \frac{|b_M|}{|a_N|} \frac{\prod_{k=1}^M B_k(\Omega)}{\prod_{k=1}^N A_k(\Omega)}$$

$$\angle H(\Omega) = \angle \frac{b_M}{a_M} + \sum_{k=1}^M \psi_k(\Omega) - \sum_{k=1}^N \theta_k(\Omega)$$

Example 1

$$H(s) = \frac{1}{s^2 + s + 1} = \frac{1}{(s - p_1)(s - p_2)}, \qquad p = \frac{1}{2}(-1 \pm j\sqrt{3})$$

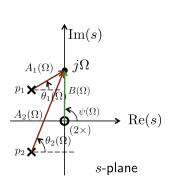


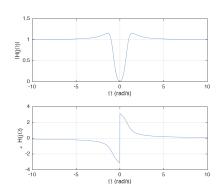


This is a second-order lowpass filter (with a ripple in the passband).

Example 2

$$H(s) = \frac{s^2}{s^2 + s + 1}$$

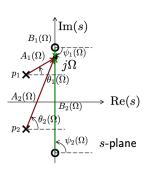


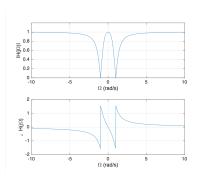


This is a second-order highpass filter. The zeros pull down the response.

Example 3

$$H(s) = \frac{s^2 + 1}{s^2 + s + 1} = \frac{(s+j)(s-j)}{(s+p_1)(s+p_2)}, \qquad p = \frac{1}{2}(1 \pm j\sqrt{3})$$





This is a second-order bandstop filter. Zeros on the imaginary axis.

Summary

- Phasors are used to construct a magnitude/phase spectrum from a given pole-zero plot.
- Close to poles, the magnitude peaks; close to zeros the magnitude drops
- \blacksquare This allows to judge the type of filter (lowpass, highpass, bandpass, \cdots)

Filter design from given specifications comes later in the course (Chapter 7.3).