EE2S11 Signals and Systems

Chapter 9: Discrete-time signals and systems - LTI systems

Alle-Jan van der Veen

_

20 December 2023

Contents

- time series
- periodic signals
- energy and power

- LTI systems: impulse response and convolution
- computing the convolution
- BIBO stability
- Lineair Difference Equation

Discrete-time signal

A discrete-time signal is a series of real or complex numbers:

$$n \in \mathbb{Z}$$
 \Rightarrow $x[n] \in \mathbb{R}$ or \mathbb{C}

The sample period is not mentioned (but sometimes present implicitly).

Notation

- as series: $x = [\cdots, 0, 0, \boxed{1}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots]$, the square indicates x[0]
- as explicit expression:

$$x[n] = \begin{cases} 0, & n < 0 \\ 2^{-n}, & n \ge 0 \end{cases}$$

as implicit expression (recursion):

$$x[n] = \begin{cases} 0, & n < 0 \\ 1, & n = 0 \\ \frac{1}{2}x[n-1], & n > 0 \end{cases}$$

Examples of signals

■ Unit pulse:
$$\delta[n] = \left\{ \begin{array}{l} 1 \, , & n = 0 \\ 0 \, , & \text{elsewhere} \end{array} \right.$$

Note that this is not a degenerated function.

■ Unit step:
$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

We can also write:

$$\delta[n] = u[n] - u[n-1],$$

$$u[n] = \sum_{k=0}^{\infty} \delta[n-k] = \sum_{m=-\infty}^{n} \delta[m],$$

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

(discrete differential)

(discrete integral)

Examples of signals

- Exponential series: $x[n] = A \alpha^n u[n]$
- Complex exponential series: $x[n] = A e^{j\omega n}$.

- x[n] is periodic with period N if $x[n] = x[n+N] \, \forall n$. This is only possible if $\omega = \frac{2\pi}{N}k$, for $k \in \mathbb{Z}$ (else "quasi-periodic"). And if N can be divided by k, the actual period is smaller than N.
- If $\omega_2 = \omega_1 + 2\pi$, then $x_2[n] = e^{j\omega_2 n}$ is equal to $x_1[n] = e^{j\omega_1 n}$. Therefore, it is sufficient to take $\omega \in \langle -\pi, \pi]$. The frequency response of a digital system is periodic!
- Is the sum of two periodic signals also periodic? Which period?

Example: quasi-periodic signal

$$x[n] = \cos(\omega_0 n + \theta_0)$$
 with $\omega_0 = 1$

If $\omega_0 \neq \frac{2\pi}{N}k$ for integers N and k, then the signal is not periodic. But because every real number can be approximated by a ratio $\frac{k}{N}$, such a signal will be approximately periodic.

Sum of two periodic signals

- $x_1[n] = \sin(\omega_1 n + \theta_1)$ with $\omega_1 = \frac{\pi}{4}$: period is $T_1 = 2\pi/\omega_1 = 8$
- $x_2[n] = \sin(\omega_2 n + \theta_2)$ with $\omega_2 = \frac{\pi}{5}$: period is $T_2 = 2\pi/\omega_2 = 10$
- $x_1[n] + x_2[n]$ has period 40 samples: least common multiple of T_1 and T_2 .

Energy and signal space

■ The energy in a discrete-time signal x[n] is defined as

$$E = \sum_{n=-\infty}^{\infty} |x[n]|^2$$

■ The set of discrete-time signals for which $E < \infty$ is called ℓ_2 :

$$\ell_2 = \{x : \sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty\}$$

This is a "Hilbert space", with pleasant properties

Similar:

$$\ell_1=\{x: \sum_{n=-\infty}^{\infty}|x[n]|<\infty\} \qquad \text{absolutely summable}$$

$$\ell_\infty=\{x: \max|x[n]|<\infty\} \qquad \text{absolutely bounded}$$

Example

$$x[n] = (\frac{1}{2})^n u[n]$$

$$E = \sum_{n=0}^{\infty} (\frac{1}{2})^{2n} = 1 + \frac{1}{4} + (\frac{1}{4})^2 + \dots = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}$$

Power

Not all signals have finite energy (e.g. $x[n] = 1 \ \forall n$).

The power of a signal x[n] is defined as

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

Example

■ Determine the power of $x[n] = \cos(\omega_0 n)$ with $\omega_0 \neq 0 \mod \pi$.

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \cos^{2}(\omega_{0}n)$$

$$= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \frac{1}{2} [1 + \cos(2\omega_{0}n)] = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \frac{1}{2} = \frac{1}{2}$$

because $\sum \cos(2\omega_0 n) \to 0$ als $\omega_0 \neq 0 \mod \pi$.

$$x[n] = \cos(\omega_0 n)$$
 with $\omega_0 = \frac{\pi}{4}$

From the plot of $x^2[n]$ we see that the power of x[n] is equal to $P = \frac{1}{2}$: the "average" of $x^2[n]$.

Systems

A system S is a mapping of the signal space ℓ onto itself:

$$x \in \ell \quad \rightarrow \quad y = \mathcal{S}\{x\} \in \ell$$

Generally, y[n] at some moment n depends on x[k] for all $k \in \mathbb{Z}$

Elementary systems

■ Time reversal: $y[n] = (\mathcal{R}x)[n] := x[-n]$

This can be used to split a signal into an even and odd part:

$$x[n] = x_e[n] + x_o[n]$$
 with $x_e[n] = \frac{1}{2}(x[n] + x[-n])$, $x_o[n] = \frac{1}{2}(x[n] - x[-n])$

Note: the energy of x[n] is the sum of energies of $x_e[n]$ and $x_o[n]$. (Does this generally hold for the sum of two signals?)

Elementary systems

Time delay over k samples:

$$y[n] = (\mathcal{D}_k x)[n] := x[n-k]$$

$$x[n] \longrightarrow \mathcal{D} \longrightarrow x[n-1]$$

Memoryless system:

y[n] is only a function of x[n] (also called a static system, in contrast to a dynamic system)

Causal system:

y[n] only depends on x[k] for $k \le n$.

Linear time-invariant system (LTI)

- Linear: $S\{ax_1 + bx_2\} = aS\{x_1\} + bS\{x_2\}$: superposition
- Time invariant: $\mathcal{S}\{\mathcal{D}_k\{x\}\} = \mathcal{D}_k\{\mathcal{S}\{x\}\}$ Or: $\mathcal{S}\{x[n]\} = y[n] \Rightarrow \mathcal{S}\{x[n-k]\} = y[n-k]$.

Fundamental property

Suppose that S is an LTI system, and $y[n] = S\{x[n]\}$ for an arbitrary signal x[n]. Then

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k],$$
 in which $h[n] = S\{\delta[n]\}$

h[n] is the impulse response of the system. Notation: y[n] = (x * h)[n].

$$x[n] \longrightarrow h[n] \longrightarrow y[n]$$

Proof

Earlier, we saw
$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

Apply S and use the LTI properties:

$$y[n] = \mathcal{S}\{x[n]\} = \mathcal{S}\left\{\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\right\}$$
$$= \sum_{k=-\infty}^{\infty} x[k]\mathcal{S}\{\delta[n-k]\}$$
$$= \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Exercise

The unit-step response of a discrete-time LTI system is

$$s[n] = 2[(0.5)^n - 1]u[n]$$

Find the impulse response h[n].

Exercise

The unit-step response of a discrete-time LTI system is

$$s[n] = 2[(0.5)^n - 1]u[n]$$

Find the impulse response h[n].

For an LTI system, the response to $\delta[n] = u[n] - u[n-1]$ is

$$h[n] = s[n] - s[n-1]$$

$$= [2(0.5)^{n} - 2]u[n] - [2(0.5)^{n-1} - 2]u[n-1]$$

$$= 0 \cdot \delta[n] + [2(0.5)^{n} - 2]u[n-1] - [2(0.5)^{n-1} - 2]u[n-1]$$

$$= [(0.5)^{n-1} - 2(0.5)^{n-1}]u[n-1]$$

$$= -(0.5)^{n-1}u[n-1]$$

Discrete convolution

$$(x * y)[n] = \sum_{k=-\infty}^{\infty} x[k]y[n-k]$$

[The notation x[n] * y[n] is common, but not quite right.]

Properties (cf. multiplication):

linear (distributive):

$$h[n] * (\alpha_1 x_1[n] + \alpha_2 x_2[n]) = \alpha_1 h[n] * x_1[n] + \alpha_2 h[n] * x_2[n]$$

- commutative: x * y = y * x
- **associative:** (x * y) * z = x * (y * z)
- $\delta[n]$ is the identity element: $x * \delta = x$

Computing the convolution (1)

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \cdots + x[0]h[n] + x[1]h[n-1] + x[2]h[n-2] + \cdots$$

Computing the convolution (2): short impulse responses

Because x * h = h * x, also $y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$

Exercise [exam January 2023]

Given the signals

$$x[n] = [\cdots, 0, \boxed{0}, 1, 2, 3, 4, 0, \cdots]$$

 $h[n] = [\cdots, 0, \boxed{2}, -1, 0, 0, \cdots].$

Determine y[n] = x[n] * h[n].

Exercise [exam January 2023]

Given the signals

$$x[n] = [\cdots, 0, \boxed{0}, 1, 2, 3, 4, 0, \cdots]$$

 $h[n] = [\cdots, 0, \boxed{2}, -1, 0, 0, \cdots].$

Determine y[n] = x[n] * h[n].

Compute
$$y[n] = x[n] * h[n] = \sum_{k=0}^{\infty} h[k]x[n-k]$$
:

```
h[0]x[n]: 0 2 4 6 8 0 0 0 · · · 

h[1]x[n-1]: 0 0 -1 -2 -3 -4 0 0 · · · · 

y[n]: 0 2 3 4 5 -4 0 0 · · ·
```

Properties of LTI systems

An LTI system is **causal** iff h[n] = 0 for n < 0

Proof

$$y[n] = \cdots + h[-2]x[n+2] + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \cdots$$

Note that y[n] should not depend on $x[n+1], x[n+2], \cdots$. Therefore, we need $h[-1]=0, h[-2]=0, \cdots$.

Properties of LTI systems

Description in matrix-vector notation (strictly speaking only for $\mathcal{S}:\ell_2 \to \ell_2$)

$$\begin{bmatrix} \vdots \\ y[-2] \\ y[-1] \\ y[0] \\ y[1] \\ y[2] \\ \vdots \end{bmatrix} = \begin{bmatrix} \ddots & & & & & \\ \cdots & h[0] & & & & \\ \cdots & h[1] & h[0] & & & & \\ \cdots & h[2] & h[1] & h[0] & & & \\ \cdots & h[3] & h[2] & h[1] & h[0] & & & \\ \cdots & h[4] & h[3] & h[2] & h[1] & h[0] & & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \vdots \\ x[-2] \\ x[-1] \\ x[0] \\ x[1] \\ x[2] \\ \vdots \end{bmatrix}$$

linear \leftrightarrow matrix-vector; causal \leftrightarrow lower triangular time-invariant \leftrightarrow constant along diagonals ("Toeplitz")

Stability

A system $\mathcal{S}: x \to y$ is called "BIBO" stable (bounded-input bounded-output) if for every $x: |x[n]| \le M_x < \infty$ there is an $M_y < \infty$ such that $y: |y[n]| \le M_y$.

Equivalently: $\mathcal{S}:\ \ell_\infty \to \ell_\infty$

Stability

An LTI system is BIBO stable iff h[n] is absolutely summable:

$$\sum |h[n]| < \infty$$

Equivalently: $h \in \ell_1$

Proof

Sufficient:

$$|y[n]| = |\sum_{-\infty}^{\infty} h[k]x[n-k]| \le \sum_{-\infty}^{\infty} |h[k]| |x[n-k]| \le M_x \sum_{-\infty}^{\infty} |h[k]|$$

■ Necessary: Suppose $\sum_{-\infty}^{\infty} |h[k]| = \infty$. Consider $x[n] = \frac{h^*[-n]}{|h[-n]|}$. Then

$$M_{\scriptscriptstyle X}=1<\infty$$
 while

$$y[0] = \sum_{-\infty}^{\infty} h[k] x[0-k] = \sum_{-\infty}^{\infty} h[k] \frac{h^*[k]}{|h[k]|} = \sum_{-\infty}^{\infty} |h[k]| = \infty$$

Example

$$h[n] = \alpha^n u[n]$$

This system is causal. Is it stable?

If $|\alpha| < 1$, then

$$\sum_{0}^{\infty} |h[n]| = \sum_{0}^{\infty} |\alpha|^{n} = \frac{1}{1 - |\alpha|} < \infty \quad : \text{stable}$$

• If $|\alpha| \ge 1$, then the sum diverges: not stable.

FIR and IIR

An LTI system is FIR (Finite Impulse Response) if

$$h[n] = 0$$
 for $n < N_1$ and $n > N_2$

and else it is called IIR (Infinite Impulse Response).

Examples

- $h[n] = u[n] u[n-3] = \begin{cases} 1, & n = 0, 1, 2 \\ 0, & \text{elsewhere} \end{cases}$ is FIR.
- $h[n] = \alpha^n u[n]$ is IIR.

FIR systems are automatically stable (always summable)

Interconnections of LTI systems

- Cascade connection: $y = (x * h_1) * h_2 \equiv (x * h_2) * h_1$
- Parallel connection: $y = x * h_1 + x * h_2 = x * (h_1 + h_2)$

Elementary discrete-time building blocks

$$x[n] \longrightarrow y[n] = ax[n]$$

$$x_1[n] \longrightarrow y[n] = x_1[n] + x_2[n]$$

$$x_2[n] \longrightarrow y[n] = x[n-1]$$

$$x_1[n] \longrightarrow y[n] = x_1[n] \cdot x_2[n]$$

$$x_2[n] \longrightarrow y[n] = x_1[n] \cdot x_2[n]$$

Here, the notation " z^{-1} " is purely formal (corresponds to the delay operator \mathcal{D})

LTI system described by a Linear Difference Equation

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k], \qquad n = \cdots, -1, 0, 1, \cdots$$

This is an N-th order system (assuming $a_0 \neq 0$ and $a_N \neq 0$).

There are N initial conditions (if the recursion starts at n = 0).

The implementation is recursive:

$$y[n] = -\frac{1}{a_0} \sum_{k=1}^{N} a_k y[n-k] + \frac{1}{a_0} \sum_{k=0}^{M} b_k x[n-k]$$

Example: first-order system

$$y[n] + ay[n-1] = bx[n]$$

$$\Rightarrow y[n] = bx[n] - ay[n-1]$$

Example: accumulator

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

$$= \sum_{k=-\infty}^{n-1} x[k] + x[n]$$

$$= y[n-1] + x[n]$$

This implementation requires only one adder and memory element (=delay). The delay remembers everything from the past that is needed for the future (=the state).

Is this a stable system?

Example: 1st order system

$$y[n] - \frac{1}{4}y[n-1] = \frac{1}{2}x[n] + \frac{1}{2}x[n-1]$$

We will see later that there also exists a realization that uses only 1 delay element.