EE2S11 Signals and Systems

Chapter 9: Discrete-time signals and systems - LTI systems

Alle-Jan van der Veen

20 December 2023

Contents

- time series
- periodic signals
- energy and power

- LTI systems: impulse response and convolution
- computing the convolution
- BIBO stability

- Lineair Difference Equation

Discrete-time signal

A discrete-time signal is a series of real or complex numbers:

$$
n \in \mathbb{Z} \quad \Rightarrow \quad x[n] \in \mathbb{R} \text { or } \mathbb{C}
$$

The sample period is not mentioned (but sometimes present implicitly).

Notation

- as series: $x=\left[\cdots, 0,0,1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right]$, the square indicates $x[0]$
- as explicit expression:

$$
x[n]= \begin{cases}0, & n<0 \\ 2^{-n}, & n \geq 0\end{cases}
$$

- as implicit expression (recursion):

$$
x[n]= \begin{cases}0, & n<0 \\ 1, & n=0 \\ \frac{1}{2} x[n-1], & n>0\end{cases}
$$

Examples of signals

- Unit pulse: $\delta[n]= \begin{cases}1, & n=0 \\ 0, & \text { elsewhere }\end{cases}$

Note that this is not a degenerated function.

- Unit step: $u[n]= \begin{cases}1, & n \geq 0 \\ 0, & n<0\end{cases}$

We can also write:

$$
\begin{array}{ll}
\delta[n]=u[n]-u[n-1], & \text { (discrete differential) } \\
u[n]=\sum_{k=0}^{\infty} \delta[n-k]=\sum_{m=-\infty}^{n} \delta[m], & \text { (discrete integral) } \\
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k] &
\end{array}
$$

Examples of signals

- Exponential series: $x[n]=A \alpha^{n} u[n]$
- Complex exponential series: $x[n]=A e^{j \omega n}$.

- $x[n]$ is periodic with period N if $x[n]=x[n+N] \forall n$.

This is only possible if $\omega=\frac{2 \pi}{N} k$, for $k \in \mathbb{Z}$ (else "quasi-periodic"). And if N can be divided by k, the actual period is smaller than N.

- If $\omega_{2}=\omega_{1}+2 \pi$, then $x_{2}[n]=e^{j \omega_{2} n}$ is equal to $x_{1}[n]=e^{j \omega_{1} n}$.

Therefore, it is sufficient to take $\omega \in\langle-\pi, \pi]$.
The frequency response of a digital system is periodic!

- Is the sum of two periodic signals also periodic? Which period?

Example: quasi-periodic signal

$$
x[n]=\cos \left(\omega_{0} n+\theta_{0}\right) \quad \text { with } \quad \omega_{0}=1
$$

If $\omega_{0} \neq \frac{2 \pi}{N} k$ for integers N and k, then the signal is not periodic. But because every real number can be approximated by a ratio $\frac{k}{N}$, such a signal will be approximately periodic.

Sum of two periodic signals

- $x_{1}[n]=\sin \left(\omega_{1} n+\theta_{1}\right)$ with $\omega_{1}=\frac{\pi}{4}:$ period is $T_{1}=2 \pi / \omega_{1}=8$
- $x_{2}[n]=\sin \left(\omega_{2} n+\theta_{2}\right)$ with $\omega_{2}=\frac{\pi}{5}:$ period is $T_{2}=2 \pi / \omega_{2}=10$
- $x_{1}[n]+x_{2}[n]$ has period 40 samples: least common multiple of T_{1} and T_{2}.

Energy and signal space

- The energy in a discrete-time signal $x[n]$ is defined as

$$
E=\sum_{n=-\infty}^{\infty}|x[n]|^{2}
$$

- The set of discrete-time signals for which $E<\infty$ is called ℓ_{2} :

$$
\ell_{2}=\left\{x: \sum_{n=-\infty}^{\infty}|x[n]|^{2}<\infty\right\}
$$

This is a "Hilbert space", with pleasant properties

- Similar:

$$
\begin{aligned}
\ell_{1}=\left\{x: \sum_{n=-\infty}^{\infty}|x[n]|<\infty\right\} & \text { absolutely summable } \\
\ell_{\infty}=\left\{x: \max _{n}|x[n]|<\infty\right\} & \text { absolutely bounded }
\end{aligned}
$$

Example

$$
\begin{aligned}
& x[n]=\left(\frac{1}{2}\right)^{n} u[n] \\
& E=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{2 n}=1+\frac{1}{4}+\left(\frac{1}{4}\right)^{2}+\cdots=\frac{1}{1-\frac{1}{4}}=\frac{4}{3}
\end{aligned}
$$

Power

Not all signals have finite energy (e.g. $x[n]=1 \forall n$).
The power of a signal $x[n]$ is defined as

$$
P=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x[n]|^{2}
$$

Example

- Determine the power of $x[n]=\cos \left(\omega_{0} n\right)$ with $\omega_{0} \neq 0 \bmod \pi$.

$$
\begin{aligned}
P & =\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} \cos ^{2}\left(\omega_{0} n\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} \frac{1}{2}\left[1+\cos \left(2 \omega_{0} n\right)\right]=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

because $\sum \cos \left(2 \omega_{0} n\right) \rightarrow 0$ als $\omega_{0} \neq 0 \bmod \pi$.

Power

$$
x[n]=\cos \left(\omega_{0} n\right) \quad \text { with } \omega_{0}=\frac{\pi}{4}
$$

From the plot of $x^{2}[n]$ we see that the power of $x[n]$ is equal to $P=\frac{1}{2}$: the "average" of $x^{2}[n]$.

Systems

A system \mathcal{S} is a mapping of the signal space ℓ onto itself:

$$
x \in \ell \quad \rightarrow \quad y=\mathcal{S}\{x\} \in \ell
$$

Generally, $y[n]$ at some moment n depends on $x[k]$ for all $k \in \mathbb{Z}$

Elementary systems

- Time reversal: $y[n]=(\mathcal{R} x)[n]:=x[-n]$

This can be used to split a signal into an even and odd part:
$x[n]=x_{e}[n]+x_{o}[n]$ with $x_{e}[n]=\frac{1}{2}(x[n]+x[-n]), x_{o}[n]=\frac{1}{2}(x[n]-x[-n])$

Note: the energy of $x[n]$ is the sum of energies of $x_{e}[n]$ and $x_{o}[n]$. (Does this generally hold for the sum of two signals?)

Elementary systems

- Time delay over k samples:

$$
y[n]=\left(\mathcal{D}_{k} x\right)[n]:=x[n-k]
$$

- Memoryless system:
$y[n]$ is only a function of $x[n]$ (also called a static system, in
 contrast to a dynamic system)
- Causal system:
$y[n]$ only depends on $x[k]$ for $k \leq n$.

Linear time-invariant system (LTI)

■ Linear: $\mathcal{S}\left\{a x_{1}+b x_{2}\right\}=a \mathcal{S}\left\{x_{1}\right\}+b \mathcal{S}\left\{x_{2}\right\}:$ superposition

- Time invariant: $\mathcal{S}\left\{\mathcal{D}_{k}\{x\}\right\}=\mathcal{D}_{k}\{\mathcal{S}\{x\}\}$ Or: $\mathcal{S}\{x[n]\}=y[n] \Rightarrow \mathcal{S}\{x[n-k]\}=y[n-k]$.

$$
\Rightarrow \quad x[n-1] \longrightarrow \mathcal{S} \longrightarrow y[n-1]
$$

Fundamental property

Suppose that \mathcal{S} is an LTI system, and $y[n]=\mathcal{S}\{x[n]\}$ for an arbitrary signal $x[n]$. Then

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k], \quad \text { in which } \quad h[n]=\mathcal{S}\{\delta[n]\}
$$

$h[n]$ is the impulse response of the system. Notation: $y[n]=(x * h)[n]$.

Proof

Earlier, we saw $x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$
Apply \mathcal{S} and use the LTI properties:

$$
\begin{aligned}
y[n]=\mathcal{S}\{x[n]\} & =\mathcal{S}\left\{\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\right\} \\
& =\sum_{k=-\infty}^{\infty} x[k] \mathcal{S}\{\delta[n-k]\} \\
& =\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\end{aligned}
$$

Exercise

The unit-step response of a discrete-time LTI system is

$$
s[n]=2\left[(0.5)^{n}-1\right] u[n]
$$

Find the impulse response $h[n]$.

Exercise

The unit-step response of a discrete-time LTI system is

$$
s[n]=2\left[(0.5)^{n}-1\right] u[n]
$$

Find the impulse response $h[n]$.
For an LTI system, the response to $\delta[n]=u[n]-u[n-1]$ is

$$
\begin{aligned}
h[n] & =s[n]-s[n-1] \\
& =\left[2(0.5)^{n}-2\right] u[n]-\left[2(0.5)^{n-1}-2\right] u[n-1] \\
& =0 \cdot \delta[n]+\left[2(0.5)^{n}-2\right] u[n-1]-\left[2(0.5)^{n-1}-2\right] u[n-1] \\
& =\left[(0.5)^{n-1}-2(0.5)^{n-1}\right] u[n-1] \\
& =-(0.5)^{n-1} u[n-1]
\end{aligned}
$$

Discrete convolution

$$
(x * y)[n]=\sum_{k=-\infty}^{\infty} x[k] y[n-k]
$$

[The notation $x[n] * y[n]$ is common, but not quite right.]

Properties (cf. multiplication):

- linear (distributive):
$h[n] *\left(\alpha_{1} x_{1}[n]+\alpha_{2} x_{2}[n]\right)=\alpha_{1} h[n] * x_{1}[n]+\alpha_{2} h[n] * x_{2}[n]$
- commutative: $x * y=y * x$
- associative: $(x * y) * z=x *(y * z)$
- $\delta[n]$ is the identity element: $x * \delta=x$

Computing the convolution (1)

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\cdots+x[0] h[n]+x[1] h[n-1]+x[2] h[n-2]+\cdots
$$

Computing the convolution (2): short impulse responses

Because $x * h=h * x$, also $y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]$

Exercise [exam January 2023]

Given the signals

$$
\begin{aligned}
x[n] & =[\cdots, 0,0,1,2,3,4,0, \cdots] \\
h[n] & =[\cdots, 0,2,-1,0,0, \cdots]
\end{aligned}
$$

Determine $y[n]=x[n] * h[n]$.

Exercise [exam January 2023]

Given the signals

$$
\begin{aligned}
x[n] & =[\cdots, 0,0,1,2,3,4,0, \cdots] \\
h[n] & =[\cdots, 0,2,-1,0,0, \cdots]
\end{aligned}
$$

Determine $y[n]=x[n] * h[n]$.
Compute $y[n]=x[n] * h[n]=\sum_{k=0}^{\infty} h[k] x[n-k]$:

$$
\begin{array}{l|r|rrrrrrrl}
h[0] \times[n]: & 0 & 2 & 4 & 6 & 8 & 0 & 0 & 0 & \cdots \\
h[1] \times[n-1]: & 0 & 0 & -1 & -2 & -3 & -4 & 0 & 0 & \cdots \\
\hline y[n]: & 0 & 2 & 3 & 4 & 5 & -4 & 0 & 0 & \cdots
\end{array}
$$

Properties of LTI systems

An LTI system is causal iff $h[n]=0$ for $n<0$

Proof

$y[n]=\cdots+h[-2] x[n+2]+h[-1] x[n+1]+h[0] x[n]+h[1] x[n-1]+\cdots$

Note that $y[n]$ should not depend on $x[n+1], x[n+2], \cdots$. Therefore, we need $h[-1]=0, h[-2]=0, \cdots$.

Properties of LTI systems

Description in matrix-vector notation (strictly speaking only for $\mathcal{S}: \ell_{2} \rightarrow \ell_{2}$)

$$
\left[\begin{array}{c}
\vdots \\
y[-2] \\
y[-1] \\
\hline y[0] \\
\hline y[1] \\
y[2] \\
\vdots
\end{array}\right]=\left[\begin{array}{cccccc}
\ddots & & & & & \\
\cdots & h[0] & & & & 0 \\
\cdots & h[1] & h[0] & & & \\
\cdots & h[2] & h[1] & h[0] & & \\
\cdots & h[3] & h[2] & h[1] & h[0] & \\
\\
\cdots & h[4] & h[3] & h[2] & h[1] & h[0] \\
& \vdots & \vdots & \vdots & \vdots & \\
& & & \\
\cdots[-2] \\
x[-1] \\
x[0] \\
x[1] \\
x[2] \\
\vdots
\end{array}\right]
$$

linear \leftrightarrow matrix-vector; causal \leftrightarrow lower triangular time-invariant \leftrightarrow constant along diagonals ("Toeplitz")

Stability

A system $\mathcal{S}: x \rightarrow y$ is called "BIBO" stable (bounded-input bounded-output) if for every $x:|x[n]| \leq M_{x}<\infty$ there is an $M_{y}<\infty$ such that $y:|y[n]| \leq M_{y}$.

Equivalently: $\mathcal{S}: \ell_{\infty} \rightarrow \ell_{\infty}$

Stability

An LTI system is BIBO stable iff $h[n]$ is absolutely summable: $\sum|h[n]|<\infty$
Equivalently: $h \in \ell_{1}$

Proof

- Sufficient:

$$
|y[n]|=\left|\sum_{-\infty}^{\infty} h[k] x[n-k]\right| \leq \sum_{-\infty}^{\infty}|h[k]||x[n-k]| \leq M_{x} \sum_{-\infty}^{\infty}|h[k]|
$$

■ Necessary: Suppose $\sum_{-\infty}^{\infty}|h[k]|=\infty$. Consider $x[n]=\frac{h^{*}[-n]}{|h[-n]|}$. Then

$$
\begin{aligned}
& M_{x}=1<\infty \text { while } \\
& y[0]=\sum_{-\infty}^{\infty} h[k] x[0-k]=\sum_{-\infty}^{\infty} h[k] \frac{h^{*}[k]}{|h[k]|}=\sum_{-\infty}^{\infty}|h[k]|=\infty
\end{aligned}
$$

Example

$h[n]=\alpha^{n} u[n]$
This system is causal. Is it stable?

■ If $|\alpha|<1$, then

$$
\sum_{0}^{\infty}|h[n]|=\sum_{0}^{\infty}|\alpha|^{n}=\frac{1}{1-|\alpha|}<\infty \quad: \text { stable }
$$

- If $|\alpha| \geq 1$, then the sum diverges: not stable.

FIR and IIR

An LTI system is FIR (Finite Impulse Response) if

$$
h[n]=0 \quad \text { for } \quad n<N_{1} \quad \text { and } \quad n>N_{2}
$$

and else it is called IIR (Infinite Impulse Response).

Examples

- $h[n]=u[n]-u[n-3]=\left\{\begin{array}{ll}1, & n=0,1,2 \\ 0, & \text { elsewhere }\end{array}\right.$ is FIR.
- $h[n]=\alpha^{n} u[n]$ is IIR.

FIR systems are automatically stable (always summable)

Interconnections of LTI systems

- Cascade connection: $y=\left(x * h_{1}\right) * h_{2} \equiv\left(x * h_{2}\right) * h_{1}$

■ Parallel connection: $y=x * h_{1}+x * h_{2}=x *\left(h_{1}+h_{2}\right)$

$=x \longrightarrow h_{1}+h_{2} \longrightarrow y$

Elementary discrete-time building blocks

$$
\begin{aligned}
& x[n] \longrightarrow a \longrightarrow y[n]=a x[n] \\
& \begin{array}{l}
x_{1}[n] \longrightarrow y[n]=x_{1}[n]+x_{2}[n] \\
x_{2}[n] \longrightarrow y[n]=x[n-1] \\
x[n] \longrightarrow z^{-1} \longrightarrow y[n]=x_{1}[n] \cdot x_{2}[n] \\
x_{1}[n] \longrightarrow Q \\
x_{2}[n] \longrightarrow
\end{array}
\end{aligned}
$$

Here, the notation " z^{-1} " is purely formal (corresponds to the delay operator \mathcal{D})

LTI system described by a Linear Difference Equation

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k], \quad n=\cdots,-1,0,1, \cdots
$$

This is an N-th order system (assuming $a_{0} \neq 0$ and $a_{N} \neq 0$).
There are N initial conditions (if the recursion starts at $n=0$).
The implementation is recursive:
$y[n]=-\frac{1}{a_{0}} \sum_{k=1}^{N} a_{k} y[n-k]+\frac{1}{a_{0}} \sum_{k=0}^{M} b_{k} x[n-k]$
Example: first-order system

$$
\begin{aligned}
& y[n]+a y[n-1]=b x[n] \\
& \Rightarrow \quad y[n]=b x[n]-a y[n-1] \\
& \\
&
\end{aligned}
$$

Example: accumulator

This implementation requires only one adder and memory element (=delay). The delay remembers everything from the past that is needed for the future (=the state).
Is this a stable system?

Example: 1st order system

$$
\begin{gathered}
y[n]-\frac{1}{4} y[n-1]=\frac{1}{2} x[n]+\frac{1}{2} x[n-1] \\
x[n] \longrightarrow \frac{1}{4} y[n-1]+\frac{1}{2} x[n]+\frac{1}{2} x[n-1] \\
\longrightarrow \text {, }
\end{gathered}
$$

We will see later that there also exists a realization that uses only 1 delay element.

