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Chapter 5: The Fourier Transform

m Given x(t), consider its Laplace transform, X(s).

—St 1 o st
x( dt =3 x(t) = — X(s)e*ds

27‘—./ o—joo

with o 4 jQ € ROC

= How would you plot X(s)?

x(t) = sin(t)u(t)

2
1
X i
(S) 1+52 . o 0
(ROC: Re(s) > 0) reai(s) © % imag
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The Fourier Transform

We will define the Fourier Transform as X (), that is X(s) with
s = j.

m Since Q is real, we can plot |X(jQ2)| (magnitude response) and
arg(X(j2)) (phase response). Much more clear than a plot of X(s)!

IS

x(t) = sin(t)u(t) =

1 1
1-Q2 % 0 5

X(Q) =

[Actually, this result is wrong... why?]
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The Fourier Transform

m We can still recover x(t) from X(j$2) using the Inverse Laplace
Transform (with o = 0): no loss of information!

X(jQ):/x(t)ethdt & x(t)zz;lrj/oo X(jQ)edjQ
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From Laplace to Fourier

Laplace Transform  X(s) = /x(t)eStdt, with s € ROC
Fourier Transform  X(Q) = /x(t)e_jmdt
(Note change in notation, we should have written X(;Q2).)

m This assumes the jQ axis is in the ROC of X(s). But usually, we
don’t talk about the ROC anymore!

m Many properties of the FT follow from those of the LT.

m This integral can easily be evaluated numerically.

Q
m Qisin rad/s. In EE we also often use F = 5 in Hz.
™

11 fourier transform
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From Laplace to Fourier
The FT exists at least if x(t) € Ly, i.e. is absolutely integrable:

/|x(t)|dt < 00.

Proof |If x(t) € Ly, then

|/ (t)e72%dt] </|x eJQt]dt—/\x )|dt < o

so that the Fourier integral converges.

m Signals in L; taper off to zero as t — +o0o0. We will want to consider
more general signals, e.g., x(t) = 1. This gives rise to distributions in
frequency domain, e.g. 4(Q).
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Example

Does the Fourier transform of the following signals exist?
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Example

Does the Fourier transform of the following signals exist?

Answer: The Fourier transform exists if the ROC of the Laplace
transform X(s) contains the jQ-axis.

= No: X(s) = % ROC {Re(s) > 0}.

1
C24jQ°

m Yes: X(s) = 54—12 ROC {Re(s) > —2}, so X(Q)

2 2
m Yes: X(s) = 12 ROC {—1 < Re(s) < 1}, so X(2) = 1+ Q2
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Inverse Fourier transform
The Fourier transform is

X(Q) = /x(t) e S dt

The corresponding inverse Fourier transform is

x(t) = 217F/X(Q) e dQ

Proof
1 it 1 / _jar it
- X(Q) e = > [ x(7) e dr | 2dQ
= l/X(T) {/ ejQ(t_T)dQ} dr = x(t)
21
—_———

27(t—7)

(This dirac property was shown in Lecture 1: completeness relation)
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Example
Consider a pulse, x(t) = u(t + %) — u(t — 1), then

X(Q) = /2 e IMdt = iQ [efﬂ/z — e*fQ/z] _ sin(©2/2) =: sinc(/2)

1 J Q)2
2
1 1
0.8
s 05
= =
>< <
04 0'\V/\ /\Vﬁ
02 VoV
0 -0.5
-5 0 5 30 20 -10 0 10 20 30
t[s] Q [rad/s]

m In this case, X(£2) happens to be real, but generally it is complex

m Careful: several definitions of the sinc function exist
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Spectra with delta spikes
The Inverse Fourier Transform shows:

X@=276@) = x(t)= - / 27 5(Q)/2dQ = 1

and more generally

X(Q)=2r6(Q—Q) =  x(t) =t

m These signals x(t) are not in L;, and do not have finite energy. Still,
we can define their Fourier transform using dirac distributions.
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Example

eont + e—ont
cos(Qt) = ———— = 7(Q— Q)+ m(Q+ Q)

| ]

- Q0 0 Qo Q
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Link to Fourier Series

m If x(t) is periodic with period Ty, then we can express it as

2w

_ ikQot _
x(t) =) X ot Q=T
where the X are the Fourier series coefficients.

m The Fourier transform of x(t) is X(Q):
X(Q) =Y X F{ P =" Xe2m 6(Q — kQyp)

Thus, X() has a line spectrum. The harmonic frequencies are
Qk = kQo.

m The Fourier transform is also obtained as a limit of the Fourier series,
for To — oo.
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Link to Fourier Series

1

ki
08 \
s CA:o.s 1L
* 04 < I
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02 © \LY \J’T’ &
0
-10 5 ) 5 10 0 20 -0 0 10 20 30
t[s] Q [rad/s]
1
08
06 =
® o4 X

| To=4
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X(t)

0.4

To=38
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Convolution
Directly from the Laplace Transform, we know
y(t) =x(t)«h(t) < Y(Q)=X(Q)H(Q)

This defines the concept of filtering in frequency domain.

(The book writes H(j2), perhaps to maintain the link to the Laplace
transform?)

Example: lowpass filter

X(Q) H(R) Y(Q) = X(Q) H(Q)
0 Q 0 Q 0 Q

11 fourier transform
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Duality

We have seen:
x(t) = o(t) & X(Q)=1
x(t)=1 & X(Q) =2746(Q)

This generalizes:
x(t)
X(t) & 27 x(—Q)

¢
g
)
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Duality

Proof Follows from the definition of the FT, with two changes of
variables: Q — 7, and t — —Q:

X(Q) = /x(t)ejmdt
X(r) = /x(t)e‘f”dt
X(r) = / x(—Q)efTQdQ:% / 2x(—Q) /20

showing that the inverse FT of 27x(—Q) is X(t).
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Scaling

1 Q
«at) o Lx ()
Proof For a > 0, use the definition:

. 1 .Q 1 Q
—jQt 4, © —j*(at) - -c
/x(at)e dt = ; /x(at)e d(at) = aX (a>

For a < 0,

/ x(at)e /dt = ! / . x(at)e 5@ d(at) = 1 x (f)

— 00 00 —d

and the result follows.

11 fourier transform
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Scaling
Interpretation For a2 < 1, we stretch x(t), and then X(Q) is shrunk
correspondingly.

1 1
0.8
06 0%
% S
o4 A A~
02 \VARRV/
0 0.5
5 0 5 30 20 -0 0 10 20 30
t[s] Q [rad/s]
With a = 1/4:
1 4
0.8 3
_ 06 2
" 04 <
02 0 Avl\vl\v’\vAvAU VAvAvl\vl\vl\vA
0 -1
5 0 5 30 20 10 0 10 20 30
t[s] Q [rad/s]
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Example (problem 5.2)
Find the Fourier transform of M
Hint: recall the FT pair

Q)

N[

(O=uttd)-u(e-3) e x@="

N[
@)
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Example (problem 5.2)
in(t)

) . Si
Find the Fourier transform of —

Hint: recall the FT pair

(O =ut+—ut-1) &  X@Q-=

Using duality,
sin(3t)
1
5t

o 27 [u(Q + %) —u(Q2— %)]

Using the scaling property (a = 2):

sin(t 27

O o el -uie-d)
=m[u(Q+1)—u(Q—-1)]
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Modulation

x(t) Pt o X(Q - Qo)
Example 4
0.8 3
QO.G = 2
;0.4 x 1

02 0 Avnv;\vl\vl\vnu vAvAvl\vl\vl\vA
0 -1
-5 0 5 -30 20 -10 0 10 20 30
t[s] Q [rad/s]

With y(t) = x(t) - e/t where Qg = 10 [note y(t) is complex]:

1

05

0

real(y(t))
Y©)

-05

AN IAAAAA

a0 s ™ @ A

-1

L A
10

-5
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Multiplication in time domain [not in book?]

Oyt o %X(Q)*Y(Q)

Proof Apply the inverse Fourier transform to
1 1
Z(Q) = —XQ)*Y(Q) =— [ X(Q)Y(Q-Q)d
(@) = 52 X+ V(2) = - [ X@) v(2 - 2)d
then
1

27
/x Qe [ / (Q—Q’)ef(ﬂ-ﬂ’)fdﬂ] dY’

27r X(Q)e e [27r / Y(Q”)ef'ﬂ”fdg"]
= x(t) y(¢)

[;ﬂ / X(Q)Y(Q - Q’)dQ’] dQ
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Example

x(t) cos(Qot) & %X(Q)*w[5(9—90)+5(§2+90)] - %[X(Q—Qo)+X(Q+Q

m This is consistent with the earlier result [modulation]:

x(t) Pt o X(Q - Q)

()T e X Q0)+ X(Q+ )]

1 gz 7r o gz
% o Annhmﬁnnn ¥ | <‘> | B o allan AAAA
:7 AT o o % o \‘1 A AN

Q [rad/s] Q [rad/s]
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Exercise (problem 5.6)

Consider the signal x(t) = cos(t),0 < t < 1, and 0 otherwise.
Find X(9).
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Exercise (problem 5.6)

Consider the signal x(t) = cos(t),0 < t < 1, and 0 otherwise.
Find X(9).

x(t) = cos(t) [u(t) — u(t — 1)] = cos(t) p(t)
X(@) = S [P@+1)+ P@ 1)
with
es/?2 — e=3/2 ___ja/2sin(§2/2)

— e5/2.
P(Q)=ce . o= ¢ /2
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Energy (Parseval)
_ 2 _ 1 2
E, = / Ix(t)[dt = %/\X(Q)\ dQ

where E, is the energy of the signal: the Fourier transform preserves the
energy.
Proof Write |x(t)|? = x(t)x* ( ), and use the Inverse FT

/|x(t)|2dt - // (£)X(Q)e2td0dt
- / X(Q) [ / x(t)e_jmdt} do

1 *
= = / X(Q)[X(Q)]*dQ

m If x(t)isin Ly, then X(Q) is in L. This gives rise to many nice
properties (Hilbert space).

11 fourier transform
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Time shift

x(t—17) & X(Q) e I

The time shift does not influence the amplitude spectrum, but causes a
linear “phase delay” —jQr.

Application Direction estimation using two antennas [plane wave]:

X()(t) = Xl(t — T)
= Xo(Q) = Xl(Q) A
y Xo(Q)
jQr 0 — ..
= € Xl(Q) = T
and 7 = gSin(G) = f=...
d C
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Applications

Radio astronomy

Phased array processing uses the phase differences in the received signal
to estimate the received power from each corresponding direction. This
results in an image of the sky.

Similar: ultrasound, MRI, phased array radar, synthetic aperture, - - -

The same concepts are used in EPO4 to locate a toy car using a
microphone array.
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Symmetry

m If x(t) is real, then X(Q) = X*(—Q), so

(X = X(=9),  £X(Q) = —£2X(-9))

The magnitude spectrum is even, the phase spectrum is odd.

m If x(t) is also even, i.e., x(t) = x(—t), then X(Q) is real.
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Differentiation

Integration
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Example

i)y & 1
u(t) < 112 + 7(Q2)
. 2
sign(t) = 2[u(t) —0.5] <« i

1 20
05 10 L
5
0s . ﬁ
- 20

5 0 5 3 2 4 0o 1 2 3
ths] Q [rad/s]

(t]
o
iX(@)
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Example

Compute the FT of x(t) = sin(t)u(t):
sin(t) < ? G(Q—1)—6(Q+1))
1
u(t) <« Q + m6(2)

sin(t)u(t) o % 2 (ER-1) - 5@+ 1)+ (J; + 7r6(Q)>
_ 2(Ql+ 5 2(91_ 5+ 5 @1 —d(@-+1)

zﬁ +jg(5(9+1)—5(s2—1))

m Cf. slide 5: the result there was incorrect because /{2 is not in the
ROC. As a result, the two delta spikes at 2 = +1 were missed.
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Existence of the Fourier transform [extra]

Sufficient conditions for the Fourier integral to exist (Dirichlet
conditions):

mx(t) €Ly
m x(t) has finitely many extrema

m x(t) has finitely many discontinuities
It can be shown that:

m If x(t) € Ly, then X(Q) is bounded and continuous, and

lim X(Q)=0 (Riemann-Lebesgue lemma)
Q—+o0

m If the Dirichlet conditions are satisfied, then

% /_Z X(Q)e/dt = % (x(tg) +x(t))
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Regularity and the Fourier transform [extra]
The decay of X(£2) depends on the worst singular behavior of x(t)
m If x(t) is p times differentiable and all derivatives are in L1, then

lim |QPX(Q) =0

Q—+oo

so that regularity of x(t) translates to rapid decay of X(Q)

If x(t) € L1 has compact support (e.g., a pulse), then
m X(Q) € C*, i.e., is infinitely many times continuously differentiable

m X(Q) cannot have a compact support

Similarly for X(Q) € Ly, by duality
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Example

m Rectangular pulse (discontinuous; not differentiable):

1 1 sin(2/2)
p(t)=u(t+3)—u(t—3) < PQ)= T
5, g /\ P(Q) decays as &
' AV

m Triangular pulse (1x differentiable; derivative discontinuous):

H 2
r(t) = p(t) * p(t) < R(Q):(S'”(Q/2)>

Q)2
1 1
0.8 08
08 08 i
o g, R(2) decays as &>
02 0.2
0 0
-5 0 5 -30 -20 -10 0 20 30
tis) Qlradss]
4 .
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Summary

Table 5.1 Basic Properties of Fourier Transform

Time Domain Frequency Domain
Signals and constants x(t), y(t), z(t), o, B X(R),Y(2),Z(2)
Linearity ax(t) + Byt aX(Q) + BY ()
_Expansion/comracﬂon Xat), @ = 0 ﬁx (%)
in time
Reflection Xx(—1) X(—€)

Parseval's energy relation g = s x(®)[2dt E = %jf; X(@)2dQ

Duality Xit) 27x(—Q)
Time differentiation . J"X(Q)

950, n > 1, integer
Frequency differentiation  —jix(f) %
Integration JEoxat % +7X(0)8(2)
Time shifting Xt — «) e*/'"“x(g)
Frequency shifting &%l (t) X(Q— Qp)
Modulation X(t) cos(Q,t) 0.5[X(2 — Q) +X(Q + 2,)]
Periodic signals X(t) = Zkae’m"’ X(Q) =Y, 2n X 8(Q2 — k)
Symmetry X(t) real X(Q)| = IX(—Q)|

ZX(Q) = =X (=)

Convolution in time Z(t) = x " yl) Z(Q) =X(Q)Y(Q)
Windowing/Multiplication  x(t)y() ;—”[X *Y1(Q)
Cosine transform X(t) even X(Q) = ff’;ox(t) cos(Qt)dt, real
Sine transform X(t) odd X() = —j [, X(t sin(Qtdt, imaginary|
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Summary

Table 5.2 Fourier Transform Pairs
Function of Time Function of Q
(1) 8 1
@ it - 7"
@® uft) LTe@
@) u(=t) ;ﬁ‘ +78(Q)
(5) sign(t) = 2[u(t) — 0.5] /%z
6) A, —o0 <t < o0 27A8(Q2)
7 Ae-@lult),a > 0 ; g/:_ -
®) Ate=alu(t), a > 0 m
© eall a0 2
(10) COS(Qt), —00 < t < 00 7[8(Q — Qo) + 8(Q + Q)]
(11) sin(Qpt), —oo < t < 0o —r[8(R2 — Qo) — 5(2+ Q)]
(12) pl) = At + 9 — ult — 97 >0  2ars@n
(13) @0 P(RQ) = u(Q + Q) — u(Q — Q)
(14) X(t) cos(Qt) 0.5[X(2 — Qy) + X(2 + )]
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