
Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

EE2S1 (or EE2S11) SIGNALS AND SYSTEMS
Part 2 exam, 7 November 2024, 13:30–15:30

Closed book; one A4 (two sides) of handwritten notes permitted. No other tools except a basic

pocket calculator permitted.

This exam consists of five questions (27 points). Answer in Dutch or English. Make clear in

your answer how you reach the final result; the road to the answer is very important.

Question 1 (6 points)

(a) Given the signals x[n] = δ[n+ 1]− 2δ[n− 2] and h[n] = [· · · , 0, 1 , 3, 2, 0, · · · ] .

Determine y[n] = x[n] ∗ h[n] using the convolution sum (in time-domain).

(b) Given x[n] = −(12)
−n−1u[−n− 1]. Determine X(z) and also specify the ROC.

(c) Given X(z) =
z−2

(1− z−1)(1 + 0.25z−1)
, ROC = {|z| > 1}.

Determine x[n] using the inverse z-transform.

(d) Suppose the DTFT of a signal x[n] is X(ejω). What is the DTFT of x[n− 3]?

(e) Let h[n] be the impulse response of an ideal low-pass filter with cut-off frequency at 0.4π.

Let the impulse response of a new filter be h1[n] = (−1)nh[n].

Determine the frequency response H1(e
jω) in terms of H(ejω), and give a sketch of it.

Solution

1p (a) Compute y[n] = x[n] ∗ h[n] =
∞∑
k=0

x[k]h[n − k]: the only nonzero terms occur for k = −1

and k = 2.

x[−1]h[n+ 1] : [· · · 0 1 3 2 0 0 0 0 · · · ]
x[2]h[n− 2] : [· · · 0 0 0 0 −2 −6 −4 0 · · · ]
y[n] : [· · · 0 1 3 2 −2 −6 −4 0 · · · ]

1.5p (b)

X(z) =

∞∑
n=−∞

x[n]z−n = −
∞∑

n=−∞
(
1

2
)−n−1u[−n− 1]z−n = −

∞∑
n=−∞

(
1

2
)n−1u[n− 1]zn

= −
∞∑
n=1

(
1

2
)n−1zn = −z

∞∑
n=0

(
1

2
)nzn =

−z

1− 1
2z

=
2z

z − 2

ROC: |z| < 2 (the signal is anti-causal)

1.5p (c)

X(z) =
z−2

(1− z−1)(1 + 0.25z−1)
=

4/5z−2

1− z−1
+

1/5z−2

1 + 0.25z−1
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Check the ROC: both terms are causal. The factor z−2 in the numerators results in a

delay: n → n− 2. This gives

x[n] =
4

5
u[n− 2] +

1

5
(−1

4
)n−2u[n− 2]

Various other, equivalent, expressions are possible depending on how you carried out the

partial fraction decomposition. All require x[0] = 0, x[1] = 0. Some options are:

x[n] = −4δ[n] +
16

5
(−1

4
)nu[n] +

4

5
u[n]

x[n] =
4

5
u[n− 1]− 4

5
(−1

4
)n−1u[n− 1]

1p (d) This corresponds to a delay of 3 samples. The z-transform would be z−3X(z), hence the

answer is e−3jωX(ejω).

1p (e) Use the modulation property: H1(e
jω) = H(ej(ω−π)). This shift of the spectrum by π

transforms a low-pass to a highpass (with cut-off at 0.6π).

Question 2 (6 points)

A causal system H(z) has the following pole-zero diagram:

θ

1−0.8

z-plane

θ = π/6
r = 1.5

r

(a) What does the fact that H(z) is a causal system tell you on the ROC of H(z)?

(b) Specify H(z), up to an arbitrary gain c.

(c) Is this a stable system?

(d) Sketch the amplitude spectrum |H(ejω)|, also indicate values on the frequency axis.

(e) Give a pole-zero diagram of the inverse system, G(z) = [H(z)]−1. Is this a causal stable

system?

Solution

1p (a) Causal implies that the ROC extends from a circle containing the ”largest” pole until

infinity, i.e., ROC: |z| > 0.8.

1p (b)

H(z) = c
(z − rejθ)(z − re−jθ)

z(z + 0.8)
= · · ·

[The original question didn’t contain the pole at z = 0, leading to an inconsistency regard-

ing the stated causality.]

1p (c) Unit circle contained in the ROC (for a causal system equal to: all poles contained in the

unit circle): stable

1p (d) Here is a matlab plot, and a sketch that better shows the essential features.
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The sketch should show: for ω = 0 the amplitude response is |H(ejω)| = 1; for ω = ±π,

the amplitude response is maximal (with flat derivative); for approximately ω = π/6, the

response is minimal (but not quite zero).

2p (e)

G(z) = H−1(z) =
1

c

z(z + 0.8)

(z − rejθ)(z − re−jθ)
= · · ·

θ

1−0.8

z-plane

θ = π/6
r = 1.5

r

For G(z), we can select an ROC |z| > 1.5. In that case, G(z) is causal but not stable

(ROC does not contain the unit circle). Alternatively, we select ROC |z| < 1.5. In that

case, G(z) is anti-causal but stable (ROC contains unit circle).

Question 3 (5 points)

A continuous-time signal xa(t) has frequencies in the range 30 to 40 Hz. The signal is sampled

with period Ts so that we obtain a discrete-time signal x[n] = xa(nTs).

The amplitude spectrum |Xa(F )| of xa(t) is as follows (with F in hertz, using Ω = 2πF ):

−30 0

|Xa(F )|

F [Hz]4030−40

(a) What is the Nyquist frequency at which xa(t) should be sampled to avoid aliasing?

(b) We sample at a rate of 40 Hz. Give a drawing of the amplitude spectrum |X(ω)| of the
signal x[n]. Also indicate the frequency axis for ω and relate it to the corresponding

frequencies in Hz.

(c) Is it possible to reconstruct xa(t) from x[n]? If not, why not? If yes, indicate how this

could be done. (Assume ideal D/A converters and ideal filters.)
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Solution

1p (a) Fs = 80 Hz.

2p (b) With Fs = 40 Hz we obtain after sampling the original spectrum, shifted by multiples

of ±40 Hz. The part of the spectrum at 30-40 Hz will also return at −10-0 Hz (in the

fundamental interval). The part of −40-−30 Hz will also return at 0-10 Hz.

|X(F )|

0 F [Hz]4030−40 −30 10 20

ω0−π

−10

2ππ−2π

−20

2p (c) Although there was aliasing, it was not destructive. We can first take an ideal DAC: this

will return an analog signal (consisting of delta-spikes) with the same spectrum as the

digital signal. Then apply an ideal analog bandpass filter which passes 30-40 Hz.

Note that we cannot first apply the bandpass filter and then do the DAC, because the

spectrum of a digital signal is periodic and we cannot filter to keep the band corresponding

to 30-40 Hz in the digital domain without also keeping the band from −10 to 10 Hz.

Note that for reconstruction, sampling at Nyquist rate is sufficient but not always neces-

sary.

Question 4 (4 points)

(a) Determine the transfer function H(z) of the following realization:

z−1

1/2

5

x[n] y[n]

z−1

2

(b) Is this a minimal realization?

(c) Draw the “Direct form no. II” realization and also specify the coefficients.

Solution

2p (a)

H(z) = 5 +
z−1 + 2z−2

1− 1/2z−2
=

5 + z−1 − 1/2z−2

1− 1/2z−2

1p (b) Yes: 2 delays used for a 2nd order filter.

1p (c)
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−1/2

x[n] y[n]
5

1/2

1

z−1

z−1

Question 5 (6 points)

We would like to design a digital high-pass filter with the following specifications:

Pass-band: starting at 5.0 kHz Ripple in the pass-band : ≤ 0.5 dB

Stop-band: below 3.0 kHz Stop-band damping: ≥ 30 dB

Sample rate: 20 kHz

The digital filter is designed by applying the bilinear transform to an analog transfer function.

(a) What are the pass-band and stop-band frequencies (in rad) in the digital time-domain?

(b) What are the filter specifications in the analog time-domain?

(c) Give a template expression for the amplitude response of an N -th order analog low-pass

Butterworth filter.

(d) What frequency transformation is needed to transform this into an analog high-pass filter?

What is the resulting template expression for the analog high-pass filter, |G(jΩ)|2?

(e) Use the design specifications to compute the unknown parameters of |G(jΩ)|2.

(f) It is known that the poles of a low-pass Butterworth filter are all located on a (semi-)circle

in the complex s-plane. What can you say about the poles and zeros of the high-pass

filter, as a result of the lowpass-to-highpass transformation?

Solution

1p (a)

fp =
5

20
=

1

4
⇒ ωp =

π

2
rad

fs =
3

20
⇒ ωs =

6π

20
= 0.3π rad

1p (b) Use the bilinear transform: ω = 2arctan(Ω) , Ω = tan(ω2 ):

Ωp = tan(
ωp

2
) = 1

Ωs = tan(
ωs

2
) = 0.5095

For the ripples: δp = 10−0.5/20 = 0.9441, δs = 10−30/20 = 0.0316.

1p (c) The Butterworth template is: |H(jΩ)|2 = 1

1 + ϵ2(Ω/Ωp)2N
.
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1p (d) s → Ω2
p

s , Ω → Ω2
p

Ω :

|G(jΩ)|2 = 1

1 + ϵ2(Ωp/Ω)2N

(In this case, Ωp = 1 which can be inserted to simplify the expressions.)

1p (e) For the passband (evaluate at Ω = Ωp), we have:

|G(Ωp)|2 =
1

1 + ϵ2
= δ2p ⇒ ϵ =

√
1

δ2p
− 1 = 0.3493

For the filter order (evaluate at Ω = Ωs):

|G(Ωs)|2 =
1

1 + ϵ2(Ωp/Ωs)2N
= δ2s ⇒

(Ωp

Ωs

)2N
=

1
δ2s

− 1

ϵ2
=:

δ2

ϵ2
⇒ N ≥ log(δ/ϵ)

log(Ωp/Ωs)

Substitution results in δ = 31.6070 and N ≥ 6.6815, i.e., the filter order is N ≥ 7.

1p (f) Denote the poles by s1, · · · , sN and let a = Ω2
p and c = 1/(s1 · · · sN ), then

H(s) =
1

(s− s1) · · · (s− sN )
⇒ G(s) =

1

(as − s1) · · · (as − sN )
= c

sN

( a
s1

− s) · · · ( a
sN

− s)

There are N zeros at s = 0 (which ensure that the filter response is exactly zero at Ω = 0),

and the poles are still on a semicircle in the left-hand plane. (To see this, use a polar

notation for the si.)

Certainly not correct to say that the poles and zeros swap places: we do not have G(s) =

[H(s)]−1.

6


