Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS
Final exam, 29 January 2021, 13:30-15:50
Block 1 (13:30-14:30)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the
course slides allowed. No other tools except a basic pocket calculator permitted.
Upload answers during 14:25-14:40

This block consists of three questions (20 points); more than usual, and this will be taken into
account during grading. Answer in Dutch or English. Make clear in your answer how you reach
the final result; the road to the answer is very important. Write your name and student number
on each sheet.

Question 1 (9 points)

(a) Let z[n ,0 . 3,2,0,---], where the 'box’ denotes the value for n = 0. Determine
the convolutlon y[ | =z[n ]*:L'[ n.
(b) Let z[n] = 27" 2u[—n — 2]. Determine the z-transform, also specify the ROC.
Hint: you could first make a plot of x[n].
(c) Let
3,
1 — 5%
(1—-35z"H(1 - 32‘1)

Draw a pole-zero plot, and determine h[n] for (c1) ROC: [2] < 1; (c2) ROC: § < |2] < 3;
(¢3) ROC: |z| > 3.

H(z) =

(d) Let x[n] = ,0 . 3,1,0,---]. Determine the DTFT X (e/%), also determine and give
plots of the amphtude Spectrum and the phase spectrum.
Solution

(a) To avoid confusion, write r[n] = z[—n] = ,0,2,3, . 0,---]. The convolution is y[n| =
> prlk]z[n — k|, where k = —2,—1,0, hence,

k=-2: 2-zn+2/= [--,0,2,6,[4],0,0,0,-]
k=-1: 3-zn+1= [--,0,0,3,[9],6,0,0, -]
k=0: 3-z[n]= [--,0,0,0,[1],3,2,0,---]
y[n]: [“‘7072797E7972707”']
(b) The response is anticausal, stops at n = —2. Shifting to the origin gives 2~ "u[—n], we will
need to take into account an ’advance’ z2.

0 00 Z2 1

2 -n _ 2 n o __ . -

X(z) ==z n;m@z) =z nzzjo(%) =15, ROC: <3



(c) Make proper and do a partial fraction expansion: write as

B N C
1—21z71 1-3271

H(z) = A+

where it follows that A= -1, B=1,C = 1.

(c1): Anticausal response. Rewrite

2z 1,
A =—1-7—5.~ 1i§z
—n—1
Binl = —dn] — 2(2) " tu[—n — 1] % <%> ufen — 1]

1 n 1
1—5z71  1-3z71

1 n
hin] = —é[n] + <§> u[n] + 3"u[n]
In each of the above cases, there are several alternative ways to write the answer.

(d)
X(e/¥) = 1+43e77% 4 e772 = e77%(3 + 2 cos(w))

Amplitude spectrum: | X (e/*)| = 3 + 2 cos(w). Phase spectrum: /(w) = —w.
Question 2 (5 points)

Consider the pole-zero plot of a discrete-time causal filter with transfer function H(z):

J z-plane

—J

(a) Determine H(z), up to an amplitude scale factor A.



(b) Suppose that we know that h[0] = 2. Determine A.

(c) Based on the pole-zero locations, contruct a sketch of the magnitude spectrum |H (e/%)].

Clearly indicate relevant values on the w-axis.

(d) Specify the ROC. Is this a stable filter?

Solution

(a)
(L—jzH0+52") _ , 14272
(1-02z"1)(1-092z1) ~1-09z1

which is consistent with a pole at zero. Alternatively,

H(z)=A

241
H(z):Am

(b) initial value theorem:
hl0] = lim H(z) = A

Z—00

Hence A = 2.

(c) Use phasors. For the amplitude response, the pole at z = 0 is irrelevant. The pole
at z = 1 gives a large peak at w = 0. The zero locations on the unit circle give zero
crossings in the amplitude response. At z = —1 (w = +), the response is low. Calculate:
H(z=1)=A-2/0.1=40; H(z = —1) = A-2/1.9 ~ 2.1. The amplitude response is an

even function.
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(d) ROC: |z| > 0.9. Stable, because the unit circle is in the ROC (or: all poles are within the
unit circle).

Question 3 (6 points)

A continuous-time signal x,(t) has a spectrum X, () as indicated below. It is sampled at the
Nyquist rate (resulting in z[n]), passed through a lowpass filter with frequency response H (e/*)
(resulting in y[n]), and reconstructed using an ideal DAC (which includes an ideal interpolation
filter). The output signal is y,(t).

The cut-off frequency of the lowpass filter is w. = £,,7/2, where T is the sample period.



ideal z[n] y[n] Tdeal

Za(t) ~ "sampler = H(z) >re§é)trg)srtr—> Yal(t)
Xo(Q
@ .
f/\k\\ 0 _ )
_Qm O Qm We We
1
38m

(a) Relate T to Q.

(b) Draw the spectra X (w), Y(w), and Y,(£2). Clearly mark the relevant values on the fre-
quency axis.

(¢) Suppose now that we sample at twice the Nyquist rate. Again draw the spectra X (w),
Y (w), and Y, ().

Solution

(a) The signal is sampled at Nyquist. Hence,

1 20
F,=— = 2m T
T 27 Qo

(b)
Q.7 1
—_— = =T

2 2
X (w) is periodic; note on the frequency axis the relation to X,(Q2). Y (w) is lowpass filtered

We =

but also periodic (the red dashed box indicates the fundamental interval). Y,(€2) is not
periodic anymore.

Q
(¢) Now, w. = %71, but also the mapping 2 — w changes:
e Ya(62)
| a IR | | | m | |
I I I I 1 1 I I 1 1
-7 —%TF 0 %w %w T w
—Q 10, 0 —Q, 0 10,9, Q



It follows that the analog signal Y, () is the same as before.



Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS
Final exam, 29 January 2021, 13:30-15:50
Block 2 (14:50-15:50)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the
course slides allowed. No other tools except a basic pocket calculator permitted.
Upload answers during 15:45-16:00

This block consists of three questions (20 points); more than usual, and this will be taken into
account during grading. Answer in Dutch or English. Make clear in your answer how you reach
the final result; the road to the answer is very important. Write your name and student number
on each sheet.

Question 4 (6 points)

Consider the following realization of a causal system:

I D
|
Y
z[n] —P— ~D—=yln]
Z_l
_>_>€A9_<_<]_
) 1/2

(a) Determine the transfer function H(z).

(b) What is the difference equation implemented by this realization?
(c) Is this a stable realization? (motivate)

(d) Is this a minimal realization? (motivate)

(e) Draw the “Direct form no. II” realization of the filter and also specify the coefficients.



Solution

(a) Let P(z) be the input of the top delay element, then

P(z) = 1272P(2) + X(2) + 2271 X ()
Y(2) = 5X(2)+2'P(2)
Pie) = PESX(2)
Y(z) = (5 n z—lll_L) X(2)
51— 2272 4 271 (14227
H(z) = : 1—L1,-2
2
B 54271 — %z_2
N 1— %2_2

(®) 1 1
y[n] — §y[n — 2] =b5z[n] + z[n —1] — 5&:[71 — 2]

(c) Stable, the two poles are p; 2 = 1/1/2, within the unit circle.

(d) Minimal, 2nd order transfer function, and two delays are used.

5
z[n] — | P ~ y[n)
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Question 5 (9 points)

A normalized second-order analog low-pass filter (Butterworth filter) is given by

1
$2+2s+1°

The 3-dB cutoff frequency for this template is 2, = 1 rad/s.

H,(s) =

We are asked to design a second-order digital high-pass filter G(z) with

Passband frequency: w, =1 rad
Passband damping: 1 dB
Stopband frequency: ws = 0.5 rad

We will first design an analog 2nd order high-pass filter G,(s) and then apply the bilinear
transform.



(a) From the given specifications, what are the passband and stopband frequencies for the

analog high-pass filter?

(b) Based on H,(s), what is the corresponding power spectrum |H,(jQ)|* ?

(c) What frequency transformation is needed to transform |H,(j€2)|? to a template |G, (j2)|?

for the analog 2nd order high-pass filter, which involves design parameters € and 2, 7

(d) What is the corresponding template high-pass filter G,(s)?

(e) Compute the unknown parameters:

What is |G4(59Q)|? and G4(s) that satisfies the specifications?

(f) What is the resulting digital high-pass filter G(z) that satisfies the specifications?

(g) How much damping in the stopband is achieved? (specify in dB)
Solution
(a) Qp, = tan(wp/2) = 0.5463, Qs = tan(w,/2) = 0.2553.

(b)
1 1

1

1

[Ha(jQ)* = H(s)H(~s)]

which indeed corresponds to a Butterworth of order 2.

(¢) We want to obtain a filter of the form
1

1+ <%)4

Comparing to (b), the transformation we need is

‘Ga(jQ)P =

Q—M/E%, s—nﬁ%

=0T T2 V20 11 02— a0+ 1 (1- Q%) 4 202

1404

(Instead of /e, we could use another scale, e.g. introduce a parameter «, as long as we

take that into account into the resulting template for |G (59)[2.)

(d) Apply the transformation to Hg(s):
1
2+ V2% 41

Ga(s) =

(e) In the equation for |G, (jQ)[?, fill in Q = Q,;:

1Ga(5,))? =107/ = 0.7943

T1te
e =1/1/0.7943 — 1 = 0.5089 .

82

= 0.1519 + 0.5511 5 + 82

Hence

Go(s)




(f) Substitute the bilinear transform,

g 1=
1+271
resulting in
(1—2~1)2
() = e
0.1519 +0.5511 1225 + G2
- (1 _ z_1)2
©0.1519(1 + 2712 405511 (1 — 2 1) (1 4+ 271) + (1 — 27 1)2
- (1 o 2—1)2
T 0.1519 +2-0.1519271 4+ 0.1519272 4 0.5511 — 0.5511272 + 1 — 221 4 =2

1—="1)°
1.7030 — 1.6962z 1 + 0.6008z~2

(g) Most reliable/straightforward is to fill in €2, in the formula for |G, (59)[*:
1 1
|Ga(2)* = — = — e = 01555
re ()" 1+ 050392 (B55)

Thus, the damping is 101log(0.1555) = —8.1 dB.

(You could also take G(z), insert z = ¢/“s, and compute the norm of the result. You’ll
have to deal with complex numbers.)

Question 6 (5 points)

(a) Determine the Fourier transform of

x(t) = cos(Qot) sin(t) .

(b) A periodic signal x(¢) has a Fourier series

Z — cos(3kt/2).

Compute the Fourier transform, X ().

(c) Use the duality theorem to prove the following Fourier transform result:

1 T _,
x(t):7t2+a2’ a>0 H X(Q):Ee €

Solution
(a) Using the multiplication property,

7T2

X(@) = 5-[6(2—Q0) +5(Q+ Q)]+ (=) [6(2 = 1) = 5(Q + Q)]
= TR0 — Qo+ 00) 60+ Qo+ D) — 6(2 — Qg — ) — 52+ D — )]

> 2
=7y 5 [6(9 = 3k/2) + 6(2 + 3k/2]
k=1

4



(c) Start with the LT pairs

e~ %u(t)
eUu(—t)
e_alt‘

Thus, we have the FT pair (s = jQ)

y(t) = e

The duality theorem gives then

_ 2a
- a2+t2

Y(t)

Finally, by rescaling we obtain then that

1

a2 +t2

1 1 2a

s+a + —s+a = a?—s?

2a
Y@ = a? + Q2

21y (—Q) = 2me~

™ _
T —al)
a



