

Resit exam EE2S1 SIGNALS AND SYSTEMS

8 January 2026, 13:30–16:30

Closed book; one A4 (two sides) of handwritten notes permitted. No other tools except a basic pocket calculator permitted.

This exam consists of seven questions (30 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important.

Question 1 (4 points)

Given the signal

$$f(t) = \begin{cases} 0 & \text{for } t < 0, \\ 2 & \text{for } t = 0, \\ 4 & \text{for } 0 < t < 2, \\ 3 & \text{for } t = 2, \\ 2 & \text{for } t > 2. \end{cases}$$

- (a) Express $f(t)$ in terms of two unit step functions.
- (b) Determine the Laplace transform of $f(t)$ including its ROC.
- (c) Determine the derivative $g(t) = \frac{df}{dt}$.
- (d) Determine the Laplace transform of $g(t)$ including its ROC.

Question 2 (6 points)

Let

$$p(t) = \begin{cases} 1 & \text{for } 0 < t < 1, \\ 0 & \text{elsewhere} \end{cases}$$

and consider the signal $x(t) = p(t) * p(t) * p(t)$, where ‘ $*$ ’ denotes convolution.

- (a) Determine $x(t)$ for $t > 3$. Motivate your answer.

The signal

$$f(t) = \begin{cases} 0 & \text{for } t < 0, \\ \sin(t) & \text{for } 0 < t < \pi, \\ t & \text{for } t > \pi, \end{cases}$$

can be written as

$$f(t) = \sin(t)u(t) + g(t - \pi)u(t - \pi),$$

where $u(t)$ is the unit step function.

- (b) Determine the signal $g(t)$.
- (c) Determine the one-sided Laplace transform of $f(t)$.

The one-sided Laplace transform of a causal signal $z(t)$ is given by

$$Z(s) = \frac{1}{(s^2 + 4)(s^2 + 9)}, \quad \text{Re}(s) > 0.$$

- (d) Determine $z(t)$.

Question 3 (3 points)

A periodic signal $x(t)$ with a fundamental period T_0 has a Fourier series expansion

$$x(t) = \sum_{k=-\infty}^{\infty} \frac{\alpha}{\beta + (k\pi)^2} e^{jk\pi t} \quad \text{with } \alpha > 0 \text{ and } \beta > 0.$$

- (a) What is the fundamental period T_0 ?
- (b) What is the average value of $x(t)$?
- (c) Is $x(t)$ even, odd, or neither? Motivate your answer.

One of the harmonics of $x(t)$ is expressed as $a \cos(4\pi t)$.

- (d) What is a ?

Question 4 (6 points)

- (a) For a causal LTI system the response to an input signal $x = [\dots, 0, \boxed{1}, 3, 3, 1, 0, \dots]$ is given by $y = [\dots, 0, \boxed{1}, 4, 6, 4, 1, 0, \dots]$.

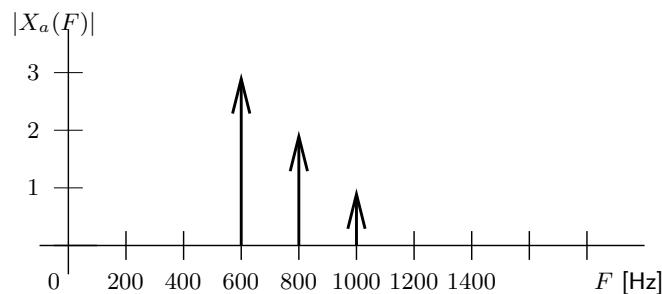
Determine the impulse response $h[n]$ of the system. (*Hint: first determine the filter length.*)

- (b) Given $x[n] = (2)^n u[-n]$, compute its z -transform and specify the ROC.

$$(c) \text{ Given } X(z) = \frac{4z}{(z-1)(z+0.25)}, \text{ ROC} = \{|z| > 1\}.$$

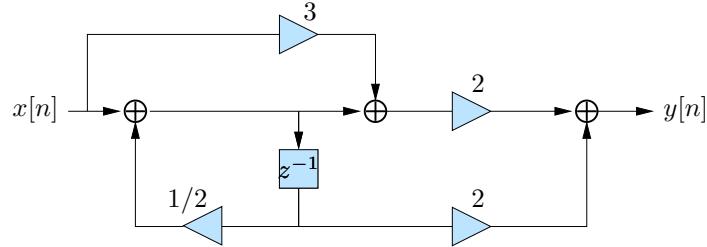
Determine $x[n]$ using the inverse z -transform.

- (d) Let $h[n]$ be the impulse response of a lowpass filter with cut-off frequency $\frac{1}{4}\pi$. Denote its DTFT by $H(e^{j\omega})$. Now consider


$$h_1[n] = \begin{cases} 2h[n] & n \text{ even} \\ 0 & \text{otherwise.} \end{cases}$$

Derive an expression for the DTFT of $h_1[n]$ in terms of $H(e^{j\omega})$ and point out what type of filter it is.

Hint: use $(-1)^n = e^{j\pi n}$.


Question 5 (3 points)

The real-valued continuous-time signal $x_a(t)$ has frequency components as indicated below; the spectrum is real-valued.

- (a) What is the (minimal) sampling frequency required to avoid aliasing?
- (b) The signal is sampled at $F_s = 1000$ Hz, resulting in $x[n]$, there is no filtering. What frequency components are present in the sampled signal?
- (c) Draw the amplitude spectrum of $x[n]$; clearly indicate the frequencies and amplitudes.

Question 6 (4 points)

- (a) Determine the transfer function $H(z)$ of the causal system shown above.
- (b) Is this a minimal system? (why)
- (c) Is this a stable system? (why)
- (d) Draw the “Direct form II” realization.

Question 7 (4 points)

We aim to design an analog *high-pass* Chebyshev filter, with specifications

passband frequency:	6 rad/s
maximal damping in the passband:	3 dB
stopband frequency:	3 rad/s
filter order:	2

An generic expression for the frequency response (amplitude-square) of a prototype N -th order low-pass Chebyshev filter is

$$|H(\Omega)|^2 = \frac{1}{1 + \epsilon^2 T_N(\Omega/\Omega_p)^2}$$

while the 2nd order Chebyshev polynomial is $T_2(\Omega) = 2\Omega^2 - 1$.

We first design a lowpass filter, and then apply a frequency transformation.

- (a) What frequency transformation do you use? What are the corresponding specifications for the lowpass filter?
- (b) Determine the filter parameters. What is the resulting frequency response $|H(\Omega)|^2$ for the lowpass filter that satisfies the specifications?
- (c) What is the minimal damping in the stopband of this lowpass filter?
- (d) Apply the frequency transformation and specify the frequency response $|G(\Omega)|^2$ of the resulting desired highpass filter.