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you reach the final result; the road to the answer is very important. Write your name and
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Question 1 (10 points)

Given a SISO system with input signal x(t) and output signal y(t). For T1 ≥ 0 and T2 ≥ 0 and

T1 + T2 6= 0, the output signal y(t) is related to the input signal x(t) by

y(t) =
1

T1 + T2

∫ t+T2

τ=t−T1
x(τ) dτ.

(a) The system is called a sliding window averager. Explain why.

(b) Is this system linear? Motivate your answer.

(c) Is this system time-invariant? Motivate your answer.

(d) Determine the transfer function of the system. What is its ROC?

(e) Determine the impulse response of the system.

(f) Is the system causal for T1 > 0 and T2 > 0? Motivate your answer.

(g) Is the system causal for T1 > 0 and T2 = 0? Motivate your answer.

Solution

(a) For each time instant t the output is the arithmetic average of the input signal taken over

the interval (t− T1, t+ T2).

(b) Let yi(t) denote the output signals that correspond to the input signals xi(t), i = 1, 2.

Given the input signal x(t) = αx1(t) + βx2(t), where α and β are constants, we have

y(t) =
1

T1 + T2

∫ t+T2

τ=t−T1
x(τ) dτ =

1

T1 + T2

∫ t+T2

τ=t−T1
[αx1(t) + βx2(t)] dτ

= αy1(t) + βy2(t).

Linear combination of input signals leads to the same linear combination of the corre-

sponding output signals. System is linear.
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(c) Let w(t) be the output signal of the system that corresponds to the input signal v(t). In

other words, we have

w(t) =
1

T1 + T2

∫ t+T2

τ=t−T1
v(τ) dτ.

Now let x(t) = v(t−a) be a time-shifted version of the input signal with time shift a. The

output signal y(t) that corresponds to this input signal is

y(t) =
1

T1 + T2

∫ t+T2

τ=t−T1
x(τ) dτ =

1

T1 + T2

∫ t+T2

τ=t−T1
v(τ − a) dτ

p=τ−a
=

1

T1 + T2

∫ t−a+T2

p=t−a−T1
v(p) dp = w(t− a).

A time shift in the input leads to a time-shifted output with the same time shift. System

is time-invariant.

(d) System is LTI so we know that for an input signal x(t) = est the output signal will be

y(t) = H(s)est, where H(s) is the transfer function. Substitution gives

y(t) =
1

T1 + T2

∫ t+T2

τ=t−T1
x(τ) dτ =

1

T1 + T2

∫ t+T2

τ=t−T1
esτ dτ =

1

s(T1 + T2)

(
esT2 − e−sT1

)
est

and we observe that

H(s) =
1

T1 + T2

(
esT2

s
− e−sT1

s

)
.

The ROC = C, there is no pole at s = 0.

(e) Inverse Laplace transform gives

h(t) =
1

T1 + T2
[u(t+ T2)− u(t− T1)] .

Can also be seen directly from the given input-output relation, of course.

(f) No. h(t) 6= 0 for t < 0. Can also be seen from the given input-output relation, of course.

(g) Yes. In this case h(t) = 0 for t < 0. Can also be seen from the input-output relation.

Question 2 (10 points)

(a) Determine the Laplace transform F (s) of the signal

f(t) = sinh(t)u(t),

where u(t) is the Heaviside unit step function.

(b) What is the ROC of F (s)?

For t > 0, the behavior of a system with input signal x(t) and output signal y(t) is governed by

the differential equation
d4y

dt4
− y = x(t).

At t = 0, y and its first three derivatives vanish.
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(c) Determine the impulse response h(t) of the system.

(d) True or false: the output signal y(t) of the system for a given input signal x(t) and with

vanishing initial conditions is given by

y(t) =
1

2

∫ t

τ=0
[sinh(t− τ)− sin(t− τ)] x(τ) dτ, t > 0.

Motivate your answer.

Solution

(a) We have

F (s) =

∫ ∞
t=0

sinh(t)e−st dt =

∫ ∞
t=0

et − e−t

2
e−st dt

=
1

2

∫ ∞
t=0

e−(s−1)t − e−(s+1)t dt =
1

2
lim
T→∞

∫ T

t=0
e−(s−1)t dt− 1

2
lim
T→∞

∫ T

t=0
e−(s+1)t dt

For the first integral, we have

1

2
lim
T→∞

∫ T

t=0
e−(s−1)t dt =

1

2

1

s− 1
for Re(s) > 1.

For the second integral we have

1

2
lim
T→∞

∫ T

t=0
e−(s+1)t dt =

1

2

1

s+ 1
for Re(s) > −1.

Consequently,

F (s) =
1

2

(
1

s− 1
− 1

s+ 1

)
=

1

s2 − 1
for Re(s) > 1

(b) ROC = {s ∈ C; Re(s) > 1}.

(c) Impulse response h(t) is the response of the system to a delta input only (initial conditions

vanish). In other words, h satisfies

d4h

dt4
− h = δ(t)

with vanishing initial conditions. Applying the one-sided Laplace transform to this equa-

tion and taking the initial conditions into account, we obtain

(s4 − 1)H(s) = 1 or H(s) =
1

s4 − 1
=

1

(s2 − 1)(s2 + 1)
=

1

2

(
1

s2 − 1
− 1

s2 + 1

)
for Re(s) > 0. An inverse Laplace transform now gives

h(t) =
1

2
[sinh(t)− sin(t)]u(t).

(d) Output signal for an arbitrary input signal is

y(t) =

∫ ∞
τ=0

h(t− τ)x(τ) dτ =
1

2

∫ t

τ=0
[sinh(t− τ)− sin(t− τ)]x(τ) dτ.

Statement is true.
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Question 3 (10 points)

Let x(t) be a periodic signal with fundamental period T0 = 4. On the interval (−2, 2), x(t) is

given by

x(t) = t2, t ∈ (−2, 2).

(a) What can you say about the decay of the Fourier coefficients as |k| → ∞ without computing

these coefficients explicitly?

(b) Determine X0, the dc-component of the signal x(t).

(c) Determine the Fourier coefficients Xk for k 6= 0.

(d) Determine the power Px of the signal.

(e) Use Parseval’s power relation to show that

∞∑
k=1

1

k4
=
π4

90
.

Solution

(a) x(t) is continuous, but its first derivative is not. Coefficients decay as 1/k2 as |k| → ∞.

(b)

X0 =
1

4

∫ 2

t=−2
t2 dt =

1

2

∫ 2

t=0
t2 dt =

4

3

(c) For k 6= 0

Xk =
1

4

∫ 2

t=−2
t2 cos(kΩ0t) dt =

1

2

∫ 2

t=0
t2 cos(kΩ0t) dt =

8

π2k2
(−1)k.

(d)

Px =
1

4

∫ 2

t=−2
t4 dt =

1

2

∫ 2

t=0
t4 dt =

16

5
.

(e) Parseval’s power relation:

Px =
∞∑

k=−∞
|Xk|2 = |X0|2 +

∞∑
k=−∞,k 6=0

|Xk|2

=
16

9
+ 2

∞∑
k=1

64

π4k4

=
16

9
+

128

π4

∞∑
k=1

1

k4

from which it follows that

∞∑
k=1

1

k4
=

(
16

5
− 16

9

)
· π

4

128
=
π4

90
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This block consists of four questions (27 points); more than usual, and this will be taken

into account during grading. Answer in Dutch or English. Make clear in your answer how

you reach the final result; the road to the answer is very important. Write your name and

student number on each sheet.

Question 4 (10 points)

(a) Given the signals x[n] = [· · · , 0, 1, 2 , 3, 0, · · · ] and h[n] = [· · · , 0 , 1, 2, 0, · · · ].
Determine y[n] = h[n] ∗ x[n] using the convolution sum.

(b) Given an input signal x[n] =
(

1
4

)n
u[n], and a system described by the difference equation

y[n] = 2x[n]− 1

2
y[n− 1] .

Determine the output signal y[n].

(c) Consider

X(z) =
z2 − 1

z2 + 4
.

Make a pole-zero plot, and compute x[n] for two cases: (i) ROC: |z| < 2, and (ii) ROC:

|z| > 2.

(d) Given x[n] = 2 an cos(ω0n), with |a| < 1. Determine the DTFT X(ω).

Solution

(a) 1 pnt y[n] =
∑2

k=1 h[k]x[n − k]

k = 1 : x[n− 1] : 1 2 3 0 · · ·
k = 2 : 2x[n− 2] : 0 2 4 6 0 · · ·

y[n] : 1 4 7 6 0 · · ·

(b) 3 pnt

X(z) =
1

1− 1
4z

−1
, ROC: |z| > 1

4
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Y (z) =
2X(z)

1 + 1
2z

−1

=
2

(1− 1
4z

−1)(1 + 1
2z

−1)

=
2/3

1− 1
4z

−1
+

4/3

1 + 1
2z

−1
.

y[n] =
2

3

(

1

4

)n

u[n] +
4

3

(

− 1

2

)n

u[n] .

(c) 4 pnt Poles at z = ±2j, zeros at z = ±1.

X(z) =
z2 − 1

z2 + 4
=

1− z−2

1 + 4z−2

= −1

4
+

5/4

1 + 4z−2

= −1

4
+

5/8

1 + 2jz−1
+

5/8

1− 2jz−1
= −1

4
+

j5/16 z

1− 1
2jz

− j5/16 z

1 + 1
2jz

(i) ROC |z| < 2: anticausal (but stable) response:

x[n] = −1

4
δ[n] +

5

16

[

j(
1

2
j)−n−1 − j(−1

2
j)−n−1

]

u[−n− 1]

= −1

4
δ[n]− 5

8

(

1

2

)−n−1

sin

(

1

2
π(−n− 1)

)

u[−n− 1] .

(ii) ROC |z| > 2: causal (but unstable) response:

x[n] = −1

4
δ[n] +

5

8
[(2j)n + (−2j)n]u[n] = −1

4
δ[n] +

5

4
2n cos

(

1

2
πn

)

u[n] .

Many different (but equivalent) expressions are possible here. Check the solution using

limz→∞X(z) = 1 = x[0].

(d) 2 pnt

anu[n] → 1

1− ae−jω

2 cos(ω0n) = ejω0n + e−jω0n → 2π[δ(ω − ω0) + δ(ω + ω0)] .

Using x[n] · y[n] ↔ 1
2πX(ω) ∗ Y (ω):

X(ω) =
1

1− ae−j(ω−ω0)
+

1

1− ae−j(ω+ω0)
.

This expression could be rewritten as

X(ω) =
2− 2a cos(ω − ω0)

1 + a2e−j2ω + 2a cos(ω − ω0)
.
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Question 5 (4 points)

Consider the following system realization:

1
2

z
−1

z
−1

x[n]

y[n]

3

1
3

2

(a) Determine the transfer function H(z).

(b) Is this a minimal realization? (Why?)

(c) Draw the corresponding Direct Form no. 2 realization.

Solution

(a) 2 pnt Call the inputs of the two delay elements P (z) and Q(z).











P (z) = 3X(z) + 1
3Y (z)

Q(z) = 2X(z) + 1
2Y (z) + z−1P (z)

Y (z) = X(z) + z−1Y (z)

Y (z) = X(z) + z−1(2 +
1

2
Y (z)) + z−2(3 +

1

3
X(z))

H(z) =
1 + 2z−1 + 3z−3

1− 1
2z

−1 − 1
3z

−2

(b) 1 pnt Yes, H(z) is 2nd order and the realization uses 2 delay elements.

(c) 1 pnt

y[n]

z
−1

z
−1

x[n]

1
2

23

1
3

Question 6 (5 points)

A continuous-time signal xa(t) has an amplitude spectrum Xa(F ) as shown below. The signal

is sampled with period T so that we obtain a series x[n] = xa(nT ).
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F [kHz]

|Xa(F )|

105−5 0−10

For this question, draw the spectra at least for ω running from −2π until 2π.

(a) What is the Nyquist frequency at which we would have to sample to avoid any aliasing?

(b) We sample the signal at 30 kHz. Make a drawing of the resulting amplitude spectrum

|X(ω)| of x[n]. Also mark the frequencies.

(c) After sampling, we apply an ideal digital highpass filter, with cutoff frequency ωc =
1
3π.

Make a drawing of the resulting amplitude spectrum |Y (ω)|. Also mark the frequencies.

(d) After sampling, we invert every second sample of x[n], resulting in r[n] = (−1)nx[n].

Make a drawing of the resulting amplitude spectrum |R(ω)|. Also mark the frequencies.

Solution

(a) 1 pnt 20 kHz.

(b) 1 pnt −2π

105−5 0−10 F [kHz]

ω [rad]

30

|X(ω)|

15 20

π−π

−15

2π

−20−30

(c) 1 pnt

|Y (ω)|

105−5−10 F [kHz]

ω [rad]

3015 20

π−π

−15

2π

−20−30

−2π 1

3
π1

3
π 0

0

(d) 2 pnt The effect of this modulation by ejπn is a shift of the spectrum by π, i.e. R(ω) = X(ω−π).

0

105−5 0−10 F [kHz]

ω [rad]

30

|R(ω)|

15 20

π−π

−15

2π

−20−30

−2π
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Question 7 (8 points)

In this question, we will design a Chebyshev type II lowpass filter G(Ω) with the following

specifications:
Third order

Passband: Fp = 3 kHz

Stopband: Fs = 5 kHz

Minimal stopband damping: 20 dB

Recall that a template Chebyshev (type I) filter has amplitude response

|H(Ω)|2 =
1

1 + ǫ2T 2
n(Ω)

.

A Chebyshev type II filter G(Ω) is derived from type I in two steps. First,

|F (Ω)|2 = 1− |H(Ω)|2 = ǫ2T 2
n(Ω)

1 + ǫ2T 2
n(Ω)

.

Next, apply a frequency transformation Ω → Ω0

Ω :

|G(Ω)|2 = |F (Ω0/Ω)|2 =
ǫ2T 2

n(Ω0/Ω)

1 + ǫ2T 2
n(Ω0/Ω)

.

(a) Recall that the third order Chebyshev polynomial is given by

T3(Ω) = 4Ω3 − 3Ω .

Give a plot of T3(Ω). Determine Ω for which T3(Ω) is 0, 1, ∞.

(b) Draw plots for |H(Ω)|2, |F (Ω)|2 and |G(Ω)|2 (for n = 3 and Ω0 = 1).

Indicate values on the horizontal and vertical axes. Pay attention to accurately draw the

ripples.

(c) Determine Ω0 and ǫ such that G(Ω) satisfies the specifications listed at the beginning of

this question.

(d) How many dB is the maximal passband attenuation for this 3rd order Chebyshev II filter?

Solution

(a) 2 pnt

T3(Ω) = 0 ⇔ Ω(4Ω2 − 3) = 0 ⇒ Ω = 0 or Ω = ±
√
3

2

T3(Ω) = 1 ⇔ (Ω− 1)(4Ω2 + 4Ω + 1) = 0 ⇒ Ω = 1 or Ω = −1

2
T3(Ω) = ∞ ⇔ Ω = ∞
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-1 -0.5 0 0.5 1
-5

0

5

T
3
(

)

(b) 2 pnt Use the plot of T3(Ω) to get the shape of the ripple right. E.g., |H(Ω)| = 1, and there is

one other point (at Ω =
√
3/2) where |H(Ω)| = 1.

The plot of |F (Ω)| is a transformation of the vertical axis and results in a highpass filter.

The plot of |G(Ω)| is found after a transformation of the horizontal axis, Ω → 1/Ω, which

transforms a highpass into a lowpass.

0 1 2 3
0

0.5

1

|H
(

)|
2

0 1 2 3
0

0.5

1

|F
(

)|
2

0 1 2 3
0

0.5

1

|G
(

)|
2

1
1+ǫ2

ǫ2

1+ǫ2

ǫ2

1+ǫ2

0.5

0.5

2√
3

(c) 2 pnt Take Ω0 = 2πFs = 10π · 1000 = 31.4 krad/s.

At Ω0, T3(Ω0/Ω) = 1, and

|G(Ω0)|2 =
ǫ2

1 + ǫ2
= 1− 1

1 + ǫ2
= 10−20/10 ⇔ ǫ =

√

1

0.99
− 1 = 0.1005

(d) 2 pnt Ωp = 2π · 3000, T3(Ω0/Ωp) = T3(5/3) = 13.519.

|G(Ω0)|2 = 0.6486 .

The maximal damping is −10 log(0.6486) = 1.88 dB.
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