Chapter 11

3rd edition: chapter 11 4th edition: chapter 9

Fourier Analysis of Discrete–time Signals and Systems

11.1 Basic Problems

11.1 The DTFT of $x[n] = 0.5^{|n|}$ is

(3rd ed) 11.1 (4th ed) 9.1

(a) If we let $\omega = 0$ then

$$
X(e^{j\omega}) = \frac{3/4}{5/4 - \cos(\omega)}
$$

$$
X(1) = \frac{3/4}{5/4 - 1} = 3 = \sum_{n} x[n]
$$

(b) The inverse DTFT is

$$
x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega
$$

if we let $n = 0$ we get that

$$
\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) d\omega = x[0]
$$

and so the given integral is $2\pi x[0] = 2\pi$.

(c) From the DTFT, $X(e^{j\omega})$ is real and since the denominator, i.e., $5/4-\cos(\omega)$, is positive for $[-\pi, \pi)$ the phase $\angle X(e^{j\omega}) = 0$.

(d) If we let $\omega = \pi$ in the DTFT we obtain

$$
\sum_{n} x[n](-1)^{n} = X(e^{j\pi n}) = \frac{3/4}{9/4} = \frac{1}{3}
$$

11.2 (a) We have

i. DTFT (3rd ed) 11.2 (4th ed) 9.2

$$
X(e^{j\omega}) = \sum_{n=-2}^{2} e^{-j\omega n} = 1 + 2\cos(\omega) + 2\cos(2\omega)
$$

ii. Z-transform

$$
X(z) = z2 + z + 1 + z-1 + z-2
$$
 ROC |z| > 0

$$
X(ej\omega) = X(z)|_{z=ej\omega}
$$
 ROC includes UC

which coincides with the previous result.

iii.
$$
X(e^{j0}) = \sum_{n=-2}^{2} 1 = 5
$$

(b) Problem 2(b)

We have

$$
X(z) = \sum_{n = -\infty}^{0} \alpha^n z^{-n} = \sum_{m = 0}^{\infty} \alpha^{-m} z^m = \frac{1}{1 - z/\alpha}, \text{ ROC: } |z| < \alpha
$$

so ROC must include the unit circle (UC) and as such $\alpha > 1$.

(c) Problem 2(c)

i. Z-transforms

$$
X_1(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} = \frac{1}{1 - 0.5z^{-1}} = \frac{z}{z - 0.5} \qquad |z| > 0.5
$$

$$
X_2(z) = -\sum_{n=-\infty}^{-1} \left(\frac{1}{2}\right)^n z^{-n} = -\sum_{m=0}^{\infty} 2^m z^m + 1 = \frac{z}{z - 0.5} \qquad |z| < 0.5
$$

ii. Since the ROC $X_1(z)$ includes the UC then $X_1(e^{j\omega}) = X_1(z)|_{z=e^{j\omega}}$.

11.3 Writing

(3rd ed) 11.3 (4th ed) 9.3

$$
t[n] = \sum_{k=-2}^{2} (3 - |k|)\delta[n - k] = 3\delta[n] + \sum_{k=1}^{2} (3 - k)(\delta[n + k] + \delta[n - k])
$$

 $A_k = 3 - |k|$, for $-2 \le k \le 2$, 0 otherwise. The Z-transform of $t[n]$ is

$$
T(z) = 3 + \sum_{k=1}^{2} (3 - k)(z^{k} + z^{-k})
$$

so that the DTFT is

$$
T(e^{j\omega}) = 3 + \sum_{k=1}^{2} (3 - k)[e^{j\omega k} + e^{-j\omega k}]
$$

$$
= \sum_{B_0}^{3} \frac{1}{k} \sum_{k=1}^{2} \underbrace{2(3 - k)}_{B_k} \cos(k\omega)
$$

for $k > 2, B_k = 0$.

11.4 (a) Impulse response

(3rd ed) -- (4th ed) --

$$
h[n] = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} e^{j\omega n} d\omega = \begin{cases} 0.5 & n = 0\\ \sin(\pi n/2) / (\pi n) & n \neq 0 \end{cases}
$$

 $h[n]$ is non-causal as $h[n] \neq 0$ for $n < 0$.

(b) $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}) = H(e^{j\omega})$ so $y[n] = h[n]$

(c) Yes, $H(e^{j\omega}) = H(e^{j\omega})H(e^{j\omega})$ so $h[n] = (h * h)[n]$.

11.5 (a) The DTFT of
$$
x[n] = e^{j\theta} \delta[n + \tau] + e^{-j\theta} \delta[n - \tau]
$$
 is

 $X(e^{j\omega}) = e^{j\theta}e^{j\omega\tau} + e^{-j\theta}e^{-j\omega\tau} = 2\cos(\omega\tau + \theta)$ (3rd ed) 11.4

(4th ed) 9.4

by duality $(\omega \to n, \tau \to \omega_0)$

 $\cos(n\omega_0 + \theta) \leftrightarrow \pi \left[e^{j\theta} \delta(\omega + \omega_0) + e^{-j\theta} \delta(\omega - \omega_0) \right]$ mistake (cf table): exp(-j theta) delta(omega+omega_0) +...

For $\theta = 0$

$$
\cos(n\omega_0) \leftrightarrow \pi \left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)\right]
$$

For $\theta = \pi/2$

 $\cos(n\omega_0 + \pi/2) = \frac{\sin(n\omega_0)}{\omega_0} \leftrightarrow \pi [j\delta(\omega + \omega_0) - j\delta(\omega - \omega_0)]$ minus-sign missing: cos(n omega_0+pi/2) = -sin(n omega_0)

(b) Replacing DTFT of cosine terms

$$
X_1(e^{j\omega}) = 2\pi\delta(\omega) + \sum_{k=1}^5 A_k \pi \left[e^{j\theta_k}\delta(\omega + k\omega_0) + e^{-j\theta_k}\delta(\omega - k\omega_0)\right]
$$

11.6 (a) We have

(3rd ed) 11.5 (4th ed) 9.5

$$
h_1[n] = h[n](1 + e^{j\pi n}) = h[n] + h[n]e^{j\pi n} = \begin{cases} 2h[n] & n \text{ even} \\ 0 & \text{otherwise} \end{cases}
$$

so

$$
H_1(e^{j\omega}) = H(e^{j\omega}) + H(e^{j(\omega + \pi)})
$$

thus since $H(e^{j\omega})$ corresponds to a LPF then $H_1(e^{j\omega})$ is a band-eliminating filter. Sketch its frequency response to verify it.

(b) i. Using DTFT

$$
H(e^{j0}) = \sum_{n=-\infty}^{\infty} h[n] = \frac{0.75}{1.25 - 1} = 3
$$

ii. Using IDTFT

$$
h[-n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{-j\omega n} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{-j\omega}) e^{-j\omega n} d\omega
$$

$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega'}) e^{j\omega' n} d\omega' = h[n]
$$

where $\omega' = -\omega$.

iii. The denominator $1.25 - \cos(\omega)$ of $H(e^{j\omega})$ is positive for $(-\pi, \pi]$, so $H(e^{j\omega})$ is real and positive, with zero phase.

11.7 (a) (a) (b) DTFT

 $X(e^{j\omega}) = 1 - e^{-j2\omega} = 2je^{-j\omega}\sin(\omega)$ (3rd ed) --

Yes, $X(e^{j\omega})$ is periodic of period 2π since $\omega + 2k\pi = \omega$. $|X(e^{j\omega})| = 2|\sin(\omega)|$ is periodic of (4th ed) --

Figure 11.1: *Problem 7: Magnitude and phase of* $X(e^{j\omega})$

period π , but also periodic of period 2π .

(b) Phase

$$
\angle X(e^{j\omega}) = \begin{cases}\n-\omega + \pi/2 & \text{if } \sin(\omega) > 0 \\
-\omega + 3\pi/2 = -\omega - \pi/2 & \text{if } \sin(\omega) \le 0\n\end{cases}
$$

and because of the odd symmetry of the phase it is zero at $\omega = 0$. See Fig. 11.1.

11.9 (a) If $\hat{H}(e^{j\omega}) = A[u(\omega + \omega_0) - u(\omega - \omega_0)]$ with zero phase. To determine A and ω_0 find the impulse response (3rd ed) 11.7 (4th ed) 9.7

$$
\hat{h}[n] = \frac{A}{2\pi} \int_{-\omega_0}^{\omega_0} e^{j\omega n} d\omega = \frac{A}{\pi n} \sin(\omega_0 n)
$$

so $\omega_0 = \pi/3$ and $A = 1$ and since $h[n] = \hat{h}[n-10]$ we have

$$
H(e^{j\omega}) = e^{-j10\omega} \hat{H}(e^{j\omega}) = e^{-j10\omega} [u(\omega + \pi/3) - u(\omega - \pi/3)]
$$

so the magnitude and phase responses are

$$
|H(e^{j\omega})| = \begin{cases} 1 & -\pi/3 \le \omega \le \pi/3 \\ 0 & \text{otherwise in } -\pi < \omega \le \pi \end{cases}
$$

$$
\angle H(e^{j\omega}) = -10\omega \qquad -\pi < \omega \le \pi
$$

(b) $X(e^{j\omega}) = e^{-j\omega} + \pi \delta(\omega + \pi/5) + \pi \delta(\omega - \pi/5)$ then

$$
Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})
$$

= $H(e^{j\omega})e^{-j\omega} + \pi H(e^{-j\pi/5})\delta(\omega + \pi/5) + \pi H(e^{j\pi/5})\delta(\omega - \pi/5)$
= $H(e^{j\omega})e^{-j\omega} + \pi e^{j10\pi/5}\delta(\omega + \pi/5) + \pi e^{-j10\pi/5}\delta(\omega - \pi/5)$
= $H(e^{j\omega})e^{-j\omega} + \pi \delta(\omega + \pi/5) + \pi \delta(\omega - \pi/5)$

and

$$
y[n] = h[n-1] + \cos(\pi n/5) - \infty < n < \infty
$$

11.10 (a) The Z-transform

$$
X(z) = \frac{1}{1 - \beta z^{-1}} \ |z| > |\beta|
$$

(3rd ed) 11.8 (4th ed) 9.8

So when $\beta \ge 1$ the region of convergence does not include the unit circle so the DTFT $X(e^{j\omega})$ cannot be found. If $\beta < 1$, the ROC includes the UC and

$$
X(e^{j\omega}) = X(z)|_{z=e^{j\omega}}
$$

- (b) We have
	- i. The inverse is

$$
x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \delta(\omega) e^{j\omega n} d\omega = \frac{1}{2\pi}
$$

ii. The inverse is

$$
x_1[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \delta(\omega - \pi) e^{j\omega n} d\omega = \frac{(-1)^n}{2\pi}
$$

iii. $\delta(\omega)=\delta(-\omega)$ so $x_2[n]=2x[n]=1/\pi.$

(c) Yes, cross-multiplying

$$
(1 + e^{-j\omega} + \dots + e^{-j\omega(N-1)})(1 - e^{-j\omega}) = 1 - e^{-j\omega N}
$$

when $N = 1$ we get an identity, $1 = (1 - e^{-j\omega})/(1 - e^{-j\omega})$.

11.11 (a) Frequency response

(3rd ed) 11.9 (4th ed) 9.9

$$
H(e^{j\omega}) = \frac{e^{-j\omega}}{3}(1 + 2\cos(\omega))
$$

$$
|H(e^{j\omega})| = \left|\frac{1 + 2\cos(\omega)}{3}\right|
$$

$$
\angle H(e^{j\omega}) = \begin{cases} -\omega & 1 + 2\cos(\omega) \ge 0\\ -\omega + \pi & 1 + 2\cos(\omega) < 0 \end{cases}
$$

(b) Poles and zeros

$$
H(z) = \frac{z^2 + z + 1}{3z^2} = \frac{(z + 0.5)^2 + 3/4}{3z^2}
$$

Poles: $z = 0$ double, zeros: $z_{1,2} = -0.5 \pm j\sqrt{3}/2$

the poles are at the origin and the zeros on the unit circle $(|z_{1,2}| = 1$. The ROC is the whole Z–plane except for $z = 0$.

- (c) If $1 + 2\cos(\omega_0) = 0$, then the magnitude is zero and this happens at $\omega_0 = \cos^{-1}(-0.5)$
- (d) Because the zeros are on the unit circle the difference between discontinuities in the wrapped phase is not 2π , so unwrapping would not change the phase.

11.12 (a) Frequency response

(3rd ed) -- (4th ed) --

$$
H(e^{j\omega}) = e^{-j2\omega}(1.2 + \cos(\omega))
$$

\n
$$
\angle H(e^{j\omega}) = -2\omega \text{ linear, as } 1.2 + \cos(\omega) > 0 \omega \in (-\pi, \pi]
$$

(b) Impulse response

$$
H(z) = \underbrace{0.5}_{h[1]} z^{-1} + \underbrace{1.2}_{h[2]} z^{-2} + \underbrace{0.5}_{h[3]} z^{-3}
$$

 $h[n]$ is symmetric with respect to $n = 2$, so the phase is linear.