Chapter 5

Frequency Analysis: the Fourier

Transform

5.1 Basic Problems

5.1 (a) The Laplace transforms are

(3rd ed) 5.1 1

(4th ed) 5.1 nt)=eult) & X(s)=5  0>-2
z2(t) =r(t) < Xao(s)= s% >0
z3(t) = te—Qtu(ﬁ) & Xs(s) = ﬁ o> -2

(b) The Laplace transforms of x; (¢) and of x3(¢) have regions of convergence containing the jQ-axis,
and so we can find their Fourier transforms from their Laplace transforms by letting s = j{2

(c) The Fourier transforms of x4 (¢) and x3(t) are

@) = 2+le
1
N CE R
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5.2 (a) In this case we are using the duality of the Fourier transforms so that the Fourier transform of the sinc
(3rd ed) 5.2 is a pulse of magnitude A and cut-off frequency 2y which we will need to determine.

(4th ed) 5.2 The inverse Fourier transform is

1 oo

z(t) = o Alu(Q + Qo) — u( — Qp)]e?Hd0
T J_—co
Q
= A ' A (9)
27T —Qo
A
= —sinQpt
Tt
sothat A= mand Q¢ =1, i.e.,
sin(t)

; & mu(@Q+1) —u(Q—1)]

(b) The Fourier transform of 1 (t) = u(t + 0.5) — u(t — 0.5) is

1 _ sin(0.592)
X,(0)= | = 0.5s _ 0.5s —
1) L [ —e ]} o 050
Using the duality property we have:
in(2/2
21(t) = u(t+0.5) — u(t — 0.5) & X1(Q) = sin(/2)
Q/2

in(t/2

X, (t) = S”;(/Q/ ) 27 [u(Q + 0.5) — u(Q — 0.5)]

using the fact that z1 (¢) is even. Then using the scaling property

sin(t)
t

=

| ¥

X1(2t) = [w((Q/2) + 0.5) — u((Q/2) — 0.5)]

& mu(Q+1) —u(Q-1)]

so x(t) = X1(2t) = sin(t)/t is the inverse Fourier transform of X () = 7w[u(Q + 1) — u(Q — 1)]

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.3 (a) The signal x(t) is even while y(¢) is odd.

(3rd ed) 5.3 (b) The Fourier transform of z(t) is
(4th ed) 5.3

X(Q) = /OO e~ ltle=1% gy
= /OO et cos(Qt)dt —j/OO e~ sin(Qt)dt
= 2 /OO eIl cos(Qt)dt
0
this is because the imaginary part is the integral of an odd function which is zero. Since cos(.) is an even

function

The Fourier transform X () is

X(Q) .

/OO e—(l—jﬂ)tdt + /OO 6_(1+jQ)tdt
0 0

1 N 12
1—7Q 1459 1402

o] ethJreijt
2 / Ty
0

which is real-valued.
(c) For y(t), odd function, its Fourier transform is

Y(Q = /OO y(t)e I dt

— 00

= —j /C>C y(t) sin(t)dt

because y(t) cos(€2t) is an odd function and its integral is zero. The Y (€2) is odd since

Y(-Q) = —j /oo y(t) sin(—Qt)dt

— 00

—Y(Q)

since the sine is odd.
(d) Let’s use the Laplace transform to find the Fourier transform of y(¢):

1 1

Y(s) = —
(8) s+1 —s+1

with a region of convergence —1 < ¢ < 1, which contains the jQ2-axis. So

1 1 20
JQ+1 —Q+1 1402

Y(Q) = Y(s) |oejo=

Copyright 2014, Elsevier, Inc. All rights reserved.
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which as expected is purely imaginary.
Check: Let z(t) = z(t) + y(t) = 2e*u(t) which has a Fourier transform

2 21-jo)
“Tia i X@+HY©)

Z(Q)
(f) If a signal is represented as z:(t) = z(t) + z,(t) then
X(Q) = Xe(Q) + XO(Q)

where the first is a cosine transform and the second a sine transform.

Copyright 2014, Elsevier, Inc. All rights reserved.
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55 (a) z1(t) = —z(t+ 1) + z(t — 1), time-shift property
(3rd ed) 5.4 _ _
(4th ed) 5.4 X1(Q) = X(Q)(—e’? + 7)) = 25 X(0Q) sin(Q)

(b) xo(t) = 2sin(t)/t by duality
Xo() =27[u(—Q+ 1) —u(—Q = 1)] =27 [u(Q + 1) —u(2 — 1)]

by symmetry of z(t).

(c) Compression

x3(t) = 2x(2t) = 2[u(2t + 1) — u(2t — 1)] = 2[u(t + 0.5) — u(t — 0.5)]

X(Q/2)

Xa() = 27

= X(2/2)
(d) Modulation: z4(t) = cos(0.5mt)z(t) so

X4(2) = 0.5[X (2 + 0.57) + X (2 — 0.57)]
(e) m5(t) = X(¢) so that by duality

X5(Q) = 2r2(—Q) = 2nfu(—Q + 1) — u(—Q — 1)] = 272(Q)

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.6 (a) z(t) = cos(t)[u(t) — u(t — 1)] = cos(t)p(t), so
(3rd ed) 5.5

(4th ed) 5.5 X(Q) =0.5[P(Q+1) + P(Q—1)]

where
675/2(65/2 _ 673/2)

P(Q) = S ls=jo = 2e

—jay2sin(2/2)
Q

(b) y(t) = 2(2t) = cos(2t)p(2t) = cos(20)[u(t) - u(t — 0.5)}, 50
Y(Q) = 0.5[P(Q+2) + P, (2 — 2)]
where
Py(Q) = Flu(t) - u(t — 0.5)] = 26—3'9/4%
2(t) = 2(t/2) = cos(t/2)p(t/2) = cos(t/2)[u(t) — u(t — 2)] = cos(t/2)pa(t) so

Z() = 0.5[Py(Q2 + 0.5) + P»(Q — 0.5)]

Py(Q) = Flu(t) — u(t — 2)] = 26792 7sin((zﬂ)
Using
Py (Q) = 0.5P(Q/2)
Py(Q) = 2P(29)
we have
X(Q) = 05[P(Q+1)+ P(Q—1)
Y(Q) = 05[05P((2/2)+1) +0.5P((2/2) — 1)] = 0.5X(2/2)
Z(Q) = 0.52P22+1)+2P(2Q —1)] = 2X(2Q)

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.8

5.7 Flo(t — 7)) = LI5(t — 7)]eejo = eI%7 s0

(3rd ed) - N : ,
(4th ed) -- (a) By linearity and time—shift

Flot—1)+6(t+

(b) By duality

0.50(t—7)+0(t+7)] <«

cos(Qot) <«

by letting 7 = {2 in the second equation.

(c) Considering

1)] = 2cos(Q)

cos(Qr)
m[6(Q2+ Qo) + 6(2 — Qo))

FIo(t —1) — 8(t +1)] = 2jsin(Q),

by duality

—0.55[6(t — 1) + 6(t + 7))

—
sin(Qot) <«

by letting T = €2 in the second equation.

sin(Q7)
— Jm[0(Q + Qo) + (2 + Q)]

Copyright 2014, Elsevier, Inc. All rights reserved.
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514 (a) Let X(Q) = A[u(Q + Qo) — u(Q — Q)] its inverse Fourier transform is

(3rd ed) --

S0 n
(4th ed) 2(t) = = Asin(§t)

Ae? a0 =

- % —Qo Tt
so A=1,0Qp=0.5and X(Q2) = u(Q+0.5) — u(2 —0.5).

(b) Y(Q) = HQ)X(Q) = X(Q) so that y(t) = (x * x)(t) = x(t), or convolution of a sinc function
with itself is a sinc.

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.17 (a) Impulse response
(3rd ed) 5.13

2 2 0
(4th ed) 5.15 h(t) = L [T g gatgg - 1 / eit=r/2 g0 ¢ L / eI (+7/2) 4Oy
2 _92 2 0 2 —92
_ ;j(eﬂt 1) - L(eﬂ'?t 1) = 1 — cos(2t)
2mgt 2mjt mt

(b) The frequency components of x(t) with harmonic frequencies bigger than 2 are filtered out so

yss(t) = 2|H(j1.5)| cos(1.5t + LH(51.5)) = 2cos(1.5t — 7/2) = 2sin(1.5¢t)

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.19

5.18 (a) Plot of X () as function of Q:

(3rd ed) --
(4th ed) 5.12

Figure 5.3: Problem 18

(b)

1 T1Q 2 Q 1
“‘”Zﬁ/ udﬁ:%/o =3

™

Copyright 2014, Elsevier, Inc. All rights reserved.
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519 (a) Polesareroots of D(s) = s> +2s+2=(s+1)2+1=0o0r
(3rd ed) 5.14
(4th ed) 5.16 s10= 1471

the zero is s = 0. It is a band-pass filter with center frequency around 1. Its magnitude response is
using vectors from the zero and the poles to the point in the j{)—axis where are finding the frequency
response:

Q  [H(GQ)

0 0 (zero at zero)

1 VB)/[(1)(WET D) =1

oo 0 (vectors of two poles and zero have infinite lengths)

(b) Impulse response

V5(s+1) V5

(s+1)24+1 (s+1)2+1

h(t) = V/be ! (cos(t) —sin(t)) u(t) = Ve 'V2cos(t + m/4)u(t)
= V10e tcos(t + m/4)u(t

(c) The steady state response corresponding to x(t) = B + cos(2t) is

BIH (jO)| + [H (jQ0)| cos(o + ZH (jS20))
= [H(jQ0)|cos(Qo + LH(jQ))

y()

for 2 to be determined by looking at frequencies for which

. V50
|H(jQ%)| = ——— =1 o
(2—02)2 + 402

505 =4 — 40+ Q5 +4Q% = Q) -5 +4= (2 -4)((R¥-1)=0

giving values of
Qo==2, £1

so we have that when 2 = 1 or 2 the dc bias is filtered out and the cosine has a magnitude of 1.

The corresponding phases are using the pole and zero vectors

Q=1 = LH(jQ)=7/2-0—tan"*(2)
Q=2 = LH(Q) =n/2—tan (1) — tan"'(3)

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.22 (a) According to the eigenvalue property for z(t) = e/, —0o < 2 < oo, the output in the steady-state

(3rd ed) 5.16 would be y(t) = €7 H(jQ) so that the differential equation gives

(4th ed) 5.19 4 , ’
QTN H(jQ) = —I U H(jQ) + I

giving H(jQ) = 1570

H(jQ)| = LH(jQ) = — tan™'(Q)

1
Vit

Y (©)]
1

0.707

Figure 5.4: Problem 22

(b) The magnitude response indicates the filter is a low-pass filter, in particular

Q [HEY)| LH(Q)

0 1 0
% —m/4
00 0 —m/2

(c) The Fourier transform of z(t) is X (2) = u(Q + 1) — u(Q2 — 1) so that the Fourier transform of the
output is
Y(Q) = X(Q)H(j)

with magnitude response as in Fig. 5.4

Copyright 2014, Elsevier, Inc. All rights reserved.
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