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4.2 (a) Replacing x(⌧) = e
j⌦0⌧ in the integral for the averager we get

1

T

Z
t

t�T

e
j⌦0⌧

d⌧ =
1

T

e
j⌦0t � e

j⌦0(t�T )

j⌦0

= e
j⌦0t


1 � e

�j⌦0T

j⌦0T

�

where according to the eigenfunction property H(j⌦0), the frequency response of the system for ⌦0, is
the term in the square brackets.

(b) By a change of variable, � = t � ⌧ , the equation for the averager is

y(t) =
1

T

Z
T

0
x(t � �)d�

which is a convolution integral with impulse response h(t) = (1/T )[u(t) � u(t � T )]. The transfer
function of the system is H(s) = (1/sT )[1 � e

�sT ] and if we let s = j⌦0 we get the above response.
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Chaparro — Signals and Systems using MATLAB 4.4

4.4 (a) x(t) is a train of pulses with T0 = 2⇡ and ⌦0 = 1. The Fourier series coefficients are

X0 = 0 by symmetry in a period

Xk =
1

2⇡

Z 0

�⇡

(�1)e�jkt
dt +

Z
⇡

0
(1)e�jkt

dt

�
=

1

2⇡

Z
⇡

0
(e�jkt � e

jkt)dt

=
1

2⇡


�(e�j⇡k + e

j⇡k � 2)

jk

�
=

1 � cos(⇡k)

j⇡k

since cos(⇡k) = (�1)k we get that

Xk =

⇢
0 k even
�2j/(⇡k) k odd

(b) Laplace transform of a period

X1(s) =
1

s
(1 � 2e

�⇡s + e
�2⇡s) =

2e
�⇡s

s
(cosh(⇡s) � 1)

so that the Fourier series coefficients are

Xk =
1

2⇡
X1(s)|s=jk = j

(�1)k+1(cos(⇡k) � 1)

⇡k

or

Xk =

⇢
0 k even
�2j/(⇡k) k odd
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Chaparro — Signals and Systems using MATLAB 4.6

4.6 (a) A period is x1(t) = t[u(t) � u(t � 1)], its fundamental frequency ⌦0 = 2⇡, and its fundamental
period T0 = 1. See Fig. 4.2.

(b) Fourier series coefficients using the integral definition:

Xk =
1

T0

Z 1

0
te

�j2⇡kt
dt =

e
�j2⇡kt

(�j2⇡k)2
(�j2⇡kt � 1)|1

t=0

=
j2⇡k + 1

4⇡2k2
� 1

4⇡2k2
=

j

2⇡k
k 6= 0

If k = 0, the dc value X0 is

X0 =
1

T0

Z 1

0
tdt =

t
2

2
|1
t=0 = 0.5

(c) Since x1(t) = tu(t) � tu(t � 1) with Laplace transform

X1(s) =
1

s2
� L[tu(t � 1)] where

L[tu(t � 1)] = L[(t � 1)u(t � 1) + u(t � 1)] =
e
�s

s2
+

e
�s

s

The FS coefficients are

Xk =
1

T0
L[x1(t)]|s=j2⇡k =

1 � e
�s

s2
� e

�s

s
|s=j2⇡k

=
1 � e

�j2⇡k

(j2⇡k)2
� e

�j2⇡k

j2⇡k
= j

1

2⇡k
k 6= 0

By inspection, the mean is X0 = 0.5 (it cannot be calculated using the Laplace transform method).
Notice that the zero-mean signal is odd so the Xk are purely imaginary.

(d) The derivative of x(t) is (see bottom plot in Fig. 4.2):

y(t) =
dx(t)

dt
= 1 �

1X

k=�1
�(t � k)

A period of it is given by y1(t) = u(t + 0.5) � u(t � 0.5) � �(t) and by the Laplace transform we
have the Fourier series coefficients of y(t) of fundamental period T0 = 1 are

Yk =

✓
e
0.5s � e

�0.5s

s
� 1

◆
|s=j2⇡k =

sin(k⇡)

k⇡
� 1 = �1 and so

using the derivative property Xk =
�1

j2⇡k
=

j

2⇡k
k 6= 0

which coincide with the ones obtained before. The X0 cannot be calculated from above.
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x(t)

dx(t)

dt

· · ·

· · ·

· · ·
t

t

1

1 2

1

0�1

�1 0 1 2

(�1) (�1) (�1) (�1)

Figure 4.2: Problem 6
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4.7 (a) i. T0 = 2 since ⌦0 = ⇡.
ii. dc value X0 = 3/4

iii. x(t) is even, since the Xk are real.
iv. For the third harmonic

3

4 + 9⇡2
(ej3⇡t + e

�j3⇡t) =
6

4 + 9⇡2
cos(3⇡t)

then A = 6/(4 + 9⇡
2).

(b) Since x(1) = 1 then letting t = 1 we have

⇡ = 4
1X

k=1

1

2k � 1
sin(2k � 1)

It is also possible to find a similar expression for other values of t which are not in the discontinu-
ities.
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Chaparro — Signals and Systems using MATLAB 4.10

4.9 (a) If the periodic signal
x(t) =

X

k

Xke
j⌦0kt

then
y(t) = 2x(t) � 3 = (2X0 � 3) +

X

k 6=0

2Xke
j⌦0kt

is also periodic of period T0 with Fourier coefficients

Yk =

⇢
2X0 � 3 k = 0
2Xk k 6= 0

The signal

z(t) = x(t � 2) + x(t)

=
X

k

Xke
j⌦0k(t�2) +

X

k

Xke
j⌦0kt

=
X

k

[Xk(1 + e
�2j⌦0k)]ej⌦0kt

is periodic of period T0 and with Fourier series coefficients Zk = Xk(1 + e
�2j⌦0k).

The signal
w(t) = x(2t) =

X

k

Xke
j⌦0k2t =

X

m even
Xm/2e

j⌦0mt

is periodic of period T0/2, with Fourier series coefficients

Wk =

⇢
Xk/2 k even
0 otherwise
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Chaparro — Signals and Systems using MATLAB 4.11

4.10 (a) The sinusoidal components have periods T1 = 1 and T2 = 1/2 so that T2/T1 = 1/2. x(t) is
periodic of fundamental period T1 = 2T2 = 1 and ⌦0 = 2⇡.

(b) Expressing

x(t) = 0.5 + 2(ej⌦0t + e
�j⌦0t) � 4(ej2⌦0t + e

�j2⌦0t)

we get X0 = 0.5, X1 = X
⇤
�1 = 2 and X2 = X

⇤
�2 = �4 (See Fig. 4.3). Plotting |Xk|2 indicates

the power at each of the harmonics and it can be seen that the highest power is at 2⌦0 = 4⇡ rad/sec.

|Xk|

\Xk

k

k

0 1 2�1�2

0.5

2

4

⇡

�⇡

�2 �1 0

1 2

Figure 4.3: Problem 10

(c) Comparing

y(t) = 2 � 2 sin(2⇡t) = 2 + 2 cos(2⇡t + ⇡/2)

with the output obtained from applying the eigenfunction property of LTI:

y(t) = 0.5|H(j0)| + 4|H(j2⇡)| cos(2⇡t + \H(j2⇡))

�8|H(j4⇡)| cos(4⇡t + \H(j4⇡))

gives H(j0) = 4, H(j2⇡) = 0.5e
j⇡/2 and H(j4⇡) = 0.
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Chaparro — Signals and Systems using MATLAB 4.13

which gives
p

A2 + B2 = 1

tan�1(B/A) = �2

which are satisfied by A = cos(2) and B = � sin(2), indeed A
2+B

2 = (cos(2))2+(sin(2))2 = 1
and tan�1(B/A) = tan�1[� tan(2)] = �2. So that the Laplace transform

L[cos(t)u(t � 2)] = L[(A cos(t � 2) + B sin(t � 2))u(t � 2)]

= AL[cos(t � 2)u(t � 2)] + BL[sin(t � 2)u(t � 2)]

=
e
�2s(cos(2)s � sin(2))

s2 + 1

which coincides with the result using the Laplace transform obtained before.
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4.12 (a) The steady state is

y(t) = 4|H(j2⇡)| cos(2⇡t + \H(j2⇡)) + 8|H(j3⇡)| cos(3⇡t � ⇡/2 + \H(j3⇡))

so H(j2⇡) = 0.5e
j⇡ = �0.5, H(j3⇡) = 0. Nothing else can be learned about the filter from the

input/output.

(b)

yss(t) =
1X

k=1

2

k2
|H(j3k/2)| cos(3kt/2 + \H(j3k/2))

= 2|H(j3/2)| cos(3t/2 + \H(j3/2))

= 2 cos(3t/2 � ⇡/2)

since for frequencies bigger than 2 the magnitude response is zero.
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Chaparro — Signals and Systems using MATLAB 4.15

4.13 (a) g1(t) = dx1(t)/dt = �0.5[u(t) � u(t � 1)] + 0.5�(t � 1) so that

g(t) =
X

k

(�0.5[u(t � k) � u(t � k � 1)]) +
X

k

0.5�(t � k � 1) = �0.5 +
X

k

0.5�(t � k � 1)

periodic of fundamental periodT0 = 1.

(b) Fourier series of g(t) and x(t)

g(t) =
dx(t)

dt
=

1X

k=�1, 6=0

Xkjk⌦0e
jk⌦0t

Gk = jk⌦0Xk (derivative property) ⌦0 = 2⇡

= G1(s)|s=jk2⇡ = �0.5
1 � e

�s

s
+ 0.5e

�s|s=jk2⇡ = 0.5 (definition)

Xk =
0.5

jk2⇡
k 6= 0

The dc term cannot be obtained from g(t), it is calculated by

X0 =

Z 1

0
(�0.5t)dt = �0.25

(c) Fourier series of

y(t) = 0.5 + x(t) = 0.25 +
1X

k=�1, 6=0

Xke
j2⇡kt

the only difference is the dc value.
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4.17 (a) The signal in [0, 1] is
x1(t) = u(t) � r(t) + r(t � 1)

so that (T0 = 1, ⌦0 = 2⇡)

Xk =


1

s
� 1

s2
(1 � e

�s)

�

s=j2⇡k

=


1

s
� e

�s/2

s2
(es/2 � e

�s/2)

�

s=j2⇡k

=
�j

2⇡k
+

e
�j⇡

4⇡2k2
2j sin(⇡k) =

�j

2⇡k
k 6= 0

and by inspection X0 = 0.5. Thus the Fourier series for x(t) is

x(t) = 0.5 +
1X

k=�1, 6=0

�j

2⇡k
e
jk2⇡t

(b) The derivative of x(t) (from the figure) is

g(t) =
dx(t)

dt
= �1 +

1X

k=�1
�(t � k)

with a period between �0.5 and 0.5 of

g1(t) = �u(t + 0.5) + u(t � 0.5) + �(t)

and same fundamental frequency ⌦0 as x(t) thus

Gk =


�1

s
(es/2 � e

�s/2) + 1

�

s=j2⇡k

=
j

2⇡k
2j sin(⇡k) + 1 = 0 + 1 = 1

so that

g(t) =
1X

k=�1
e
jk2⇡t

equal to the derivative of the Fourier series of x(t). Using the derivative Fourier series property

Gk = j⌦0kXk ) Xk =
1

j2⇡k
=

�j

2⇡k

Using these and X0 = 0.5 we can then get the Fourier series for x(t).
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Chaparro — Signals and Systems using MATLAB 4.20

4.18 (a) According to the eigenfunction property of LTI the steady state response corresponding to the given
x(t) = 1 + cos(t + ⇡/4) = cos(0t) + cos(t + ⇡/4) is

yss(t) = |H(j0)| cos(0t + \H(j0)) + |H(j)| cos(t + ⇡/4 + \H(j))

Since

H(j0) = H(s) |s=j0=
1

2
e
j0

H(j) = H(s) |s=j=
1 + j

1 + 3j
=

4 � 2j

10
= 0.447\�26.6o

yss(t) = 0.5 + 0.447 cos(t + 18.4o)

(b) i. The input x(t) = 4u(t) = 4 cos(0t)u(t) in the steady state is 4 cos(0t), i.e., a cosine of
frequency zero, so that its response is

yss(t) = 4|H(j0)| cos(0t + \H(j0)) = 4 ⇥ 0.5 = 2

ii. If x(t) = 4u(t), then in the Laplace transform

Y (s) =
4

s((s + 1.5)2 + (2 � 1.52))
=

A

s
+ · · ·

where the · · · stands for terms that have poles in the left-hand s-plane that correspond to the
transient so

yss(t) = A = Y (s)s |s=0= 2
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4.21 (a) The derivative of the period between 0 and 2 of the triangular signal x(t) is

y1(t) =
dx1(t)

dt
= u(t) � 2u(t � 1) + u(t � 2)

and the signal
y(t) =

X

k

y1(t � 2k)

is a train of square pulses of period T0 = 2 and average zero. The signal z(t) = y(t) + 1 is also periodic
of the same period as y(t) but average 1. The Fourier series coefficients of y(t) are

Yk =
1

2s
e
�s(es � 2 + e

�s)|s=j⇡k =
1

j⇡k
e
�j⇡k(cos(⇡k) � 1)

=
1

j⇡k

⇥
(�1)2k � (�1)k

⇤
=

2

j⇡k
k 6= 0, odd

and zero for k even. The Fourier coefficients of z(t) are 1 as d.c. value and Zk = Yk for k odd and zero
for k even and 6= 0.
(b) The Fourier series of y(t) is

y(t) =
1X

k=�1, odd

2

j⇡k
e
j⇡kt

= 4
X

k>0, odd

sin(⇡kt)

⇡k

and that of the signal z(t) is

z(t) = 1 + 4
X

k>0, odd

sin(⇡kt)

⇡k

The signal y(t) is an odd function of t and as such it can be represented by sines, and this is why it has
purely imaginary coefficients for its exponential Fourier series. The signal z(t) is neither even nor odd
and as such it is made up of an even component, the constant 1, and an odd component, y(t).
(c) If we reverse the process in (a) by integrating y1(t) we get x1(t) = r(t)� 2r(t� 1)+ r(t� 2) which
would give us the periodic signal x(t) by shifting and adding. The Fourier series coefficients of x(t) are

Xk =
Yk

j⇡k
=

2

�(⇡k)2
k 6= 0, odd, and X0 = 0.5

and zero for k even. Notice that the integral of y(t) would be zero for each period and would give the
x1(t) shifted in time in each period.
(d) The signal x(t) is even and as such it can be represented by a cosine Fourier series so the coefficients
are real. We have that

x(t) = 0.5 +
1X

k=�1, k 6=0, odd

�2

(⇡k)2
e
j⇡kt

= 0.5 +
1X

k=1, odd

4 cos(⇡kt � ⇡)

(⇡k)2
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