
Chapter 2

Continuous–time Systems

2.1 Basic Problems
2.1 (a) The y(t)-x(t) relation is a line through the origin between −10 to 10 and a constant before and after

that. The system is non-linear, for instance if x(t) = 7 the output is y(t) = 700 but if we double the
input, the output is not 2y(t) = 1400 but 1000.
(b) If the inputs is always between −10 and 10 the system behaves like a linear system. In this case the
output is chopped whenever x(t) is above 10 or below −10. Se Fig. 2.1.
(c) Whenever the input goes below −10 or above 10 the output is −1000 and 1000, otherwise the output
is 2000 cos(2πt)u(t).
(d) If the input is delayed by 2 the clipping will still occur, simply at a later time. So the system is time
invariant.
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Figure 2.1: Problem 1: input and output of amplifier.
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Chaparro — Signals and Systems using MATLAB 2.2

2.2 (a) Input x1(t) = δ(t) gives

y1(t) =

∫ t

t−1

δ(τ)dτ + 2 =





2 t < 0
3 0 ≤ t ≤ 1
2 t > 1

x2(t) = 2x1(t) gives

y2(t) = 2

∫ t

t−1

δ(τ)dτ + 2 =





2 t < 0
4 0 ≤ t ≤ 1
2 t > 1

Since y2(t) 6= 2y(t) system is non-linear.
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Figure 2.2: Problem 2

(b) If x3(t) = u(t) − u(t − 1) then y3(t) = 2 + r(t) − 2r(t − 1) + r(t − 2) . If x4(t) = x3(t − 1)
then the corresponding output is y3(t− 1), so the system is time-invariant.

(c) Non-causal, although y(t) depends on present and past inputs, it is not zero when x(t) = 0, due to
the bias of 2.

(d) If |x(t)| < M we have

|y(t)| ≤
∫ t

t−1

|x(τ)|dτ + 2 < M + 2 <∞

The system is BIBO stable.

Copyright 2014, Elsevier, Inc. All rights reserved.
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Chaparro — Signals and Systems using MATLAB 2.4

2.4 (a) Derivative
dz(t)

dt
= w(t)− w(t− 1)

which excludes the initial condition of 2. System is LTI if initial condition is zero.

(b) i. If input is i(t− µ) then the output is letting η = τ − µ
∫ t

0

i(τ − µ)dτ =

∫ 0

−µ
i(η)dη +

∫ t−µ

0

i(η)dη = vc(t− µ)

that is, provided that i(t) = 0 for t < 0, the system is time-invariant.

ii. If i(t) = u(t) then vc(t) =
∫ t

0
u(τ)dτ = r(t). If we shift the inputs i1(t) = i(t−1) = u(t−1)

the previous output is shifted, so system is time-invariant.

(c) If x(t) = u(t) then y(t) = sin(2πt)u(t) while corresponding to x(t − 0.5) = u(t − 0.5) is
y1(t) = sin(2πt)u(t− 0.5) indicating the system is not time-invariant as y1(t) is not y(t− 0.5).
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Figure 2.3: Problem 4(c)

Copyright 2014, Elsevier, Inc. All rights reserved.
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Chaparro — Signals and Systems using MATLAB 2.5

2.5 (a) See Fig. 1. The circuit is a series connection of a voltage source x(t) with a resistor R = 1/2 Ω,
and capacitor C = 1F. Indeed, the mesh current is i(t) = dy(t)/dt so

x(t) = Ri(t) + y(t) = Rdy(t)/dt+ y(t)

_
+

x(t)

R = 1/2 �

C = 1F
+

�
y(t)

i(t)

Figure 2.4: Problem 5

(b) The output is
y(t) = e−2t 0.5 e2τ |t0 = 0.5(1− e−2t)u(t)

and

dy(t)

dt
= e−2tu(t) + 0.5(1− e−2t)δ(t)

= e−2tu(t)

dy(t)

dt
+ 2y(t) = e−2tu(t) + u(t)− e−2tu(t)

= u(t)

Copyright 2014, Elsevier, Inc. All rights reserved.
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Chaparro — Signals and Systems using MATLAB 2.7

2.7 (a) The charge is
q(t) = C(t)v(t)

so that

i(t) =
dq(t)

dt
= C(t)

dv(t)

dt
+ v(t)

dC(t)

dt

(b) If C(t) = 1 + cos(2πt) and v(t) = cos(2πt), the current is

i1(t) = C(t)
dv(t)

dt
+ v(t)

dC(t)

dt
= (1 + cos(2πt))(−2π sin(2πt))− cos(2πt)(2π sin(2πt))

= −2π sin(2πt)[1 + 2 cos(2πt)]

(c) When the input is
v(t− 0.25) = cos(2π(t− 1/4)) = sin(2πt)

the output current is

i2(t) = C(t)
dv(t− 0.25)

dt
+ v(t− 0.25)

dC(t)

dt

= (1 + cos(2πt))(2π cos(2πt))− 2π sin2(2πt)

= 2π cos(2πt) + 2π[cos2(2πt)− sin2(2πt)]

which is not
i1(t− 0.25) = 2π cos(2πt)[1 + sin(2πt)]

so the system is time varying.

Copyright 2014, Elsevier, Inc. All rights reserved.
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Chaparro — Signals and Systems using MATLAB 2.8

2.8 (a) The system is LTI since the input x(t) and the output y(t) are related by a convolution integral with
h(t− τ) = e−(t−τ)u(t− τ) or h(t) = e−tu(t).
Another way: to show that the system is linear let the input be x1(t) + x2(t), and x1(t) and x2(t) have
as outputs

yi(t) =

∫ t

0

e−(t−τ)xi(τ)dτ i = 1, 2

The output for x1(t) + x2(t) is

∫ t

0

e−(t−τ)(x1(τ) + x2(τ))dτ = y1(t) + y2(t)

To show the time invariance let the input be x(t− t0), its output will be

∫ t

0

e−(t−τ)x(τ − t0)dτ =

∫ 0

−t0
e−((t−t0)−µ)x(µ)dµ+

∫ t−t0

0

e−((t−t0)−µ)x(µ)dµ

=

∫ t−t0

0

e−((t−t0)−µ)x(µ)dµ = y(t− t0)

by letting µ = τ − t0 and using the causality of the input. The system is then TI.

Finally the impulse response is found by letting x(t) = δ(t) so that the output is

h(t) =

∫ t

0

e−(t−τ)δ(τ)dτ =

∫ t

0

e−(t−0)δ(τ)dτ =

{
e−t × 1 = e−t t ≥ 0
0 otherwise

(b) Yes, this system is causal as the output y(t) depends on present and past values of the input.
(c) Letting x(t) = u(t), the unit-step response is

s(t) =

∫ t

0

e−t+τu(τ)dτ = e−t
∫ t

0

eτdτ = 1− e−t

for t ≥ 0 and zero otherwise. The impulse response as indicated before is h(t) = ds(t)/dt = e−tu(t).
The BIBO stability of the system is then determined by checking whether the impulse response is abso-
lutely integrable or not, ∫ ∞

−∞
|h(t)|dt =

∫ ∞

0

e−tdt = −e−t |∞0 = 1

so yes it is BIBO stable.
(d) Using superposition, the response to the pulse x1(t) = u(t)− u(t− 1) would be

y1(t) = y(t)− y(t− 1) = (1− e−t)u(t)− (1− e−(t−1))u(t− 1)

which starts at zero, grows to a maximum of 1− e−1 at t = 1 and goes down to zero as t→∞.

Copyright 2014, Elsevier, Inc. All rights reserved.
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Chaparro — Signals and Systems using MATLAB 2.9

2.9 (a) Letting x(t) = δ(t) the impulse response is

h(t) =
1

T

∫ t+T/2

t−T/2
δ(τ)dτ

=
1

T

∫ t

t−T/2
δ(τ)dτ +

1

T

∫ t+T/2

t

δ(τ)dτ

If t > 0, and t− T/2 < 0 the first integral includes 0, while the second does not. Thus

h(t) =
1

T

∫ t

t−T/2
δ(τ)dτ + 0 =

1

T
t > 0 and t− T/2 < 0, or 0 < t < T/2

Likewise when t < 0 then t−T/2 < −T/2 and t+T/2 < T/2 the reverse of the previous case happens
and so

h(t) = 0 +
1

T

∫ t+T/2

t

δ(τ)dτ =
1

T
t < 0 and t+ T/2 > 0, or − T/2 < t < 0

so that
h(t) =

1

T
[u(t+ T/2)− u(t− T/2)]

indicating that the system is non-causal as h(t) 6= 0 for t < 0.
(b) If x(t) = u(t) then the output of the averager is

y(t) =
1

T

∫ t+T/2

t−T/2
u(τ)dτ

If t + T/2 < 0 then y(t) = 0 since the argument of the unit step signal is negative. If t+ T/2 ≥ 0 and
t− T/2 < 0 then

y(t) =

∫ t+T/2

0

u(τ)dτ =
1

T
(t+ T/2)

and finally when t− T/2 ≥ 0 then

y(t) =
1

T

∫ t+T/2

t−T/2
u(τ)dτ = 1

The unit-step response of the noncausal averager is

y(t) =





0 t < −T/2
1
T (t+ T/2) −T/2 ≤ t < T/2
1 t ≥ T/2

Copyright 2014, Elsevier, Inc. All rights reserved.
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2.12 (a) If y(0) = 0 the system is linear, indeed for an input αx1(t) + βx2(t) with y1(t) the response due
to x1(t) and y2(t) the response due to x2(t) we have

∫ t

0

e−(t−τ)[αax1(τ) + βx2(τ)]dτ = αy1(t) + βy2(t)

If y(0) 6= 0, the output for input αx1(t) is

y(0)e−t +

∫ t

0

e−(t−τ)αx1(τ)dτ = y(0)e−t + αy1(t)

which is not αy1(t) thus it is not linear.

(b) If the input is x(t) = 0, then y(t) = y(0)e−tu(t) is the zero-input response, due completely to the
initial condition. If y(0) = 0 the response

y(t) =

∫ t

0

e−(t−τ)x(τ)dτ

(which is the convolution integral of the impulse response h(t) = e−tu(t) with x(t)) is the zero-
state response.

(c) The impulse response, obtained when y(0) = 0, x(t) = δ(t), and y(t) = h(t) is

h(t) =

∫ t

0−
e−(t−τ)δ(τ)dτ = e−t

∫ t

0−
e0δ(τ)dτ =

{
e−t t ≥ 0
0 otherwise

(d) If x(t) = u(t) and y(0) = 0, then y(t) = s(t) given by

s(t) =

∫ t

0

e−(t−τ)dτ = (1− e−t)u(t)

Notice the relation between the unit-step and the impulse response:
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Figure 2.5: Problem 12

ds(t)

dt
= δ(t)− e−tδ(t) + e−tu(t)

= e−tu(t) = h(t)

Copyright 2014, Elsevier, Inc. All rights reserved.
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2.14 (a) Yes. Using the convolution integral the output is

y(t) =

∫ ∞

−∞
h(τ)︸︷︷︸

u(τ)−u(τ−1)

x(t− τ)dτ =

∫ 1

0

x(t− τ)dτ =

∫ t

t−1

x(η)dη

where we changed the variable to η = t− τ .

(b) If x(t) = u(t) then the step-response is

y(t) =





0 t < 0
t 0 ≤ t < 1
1 t ≥ 1.

i.e., the unit-step response is s(t) = r(t)− r(t− 1) and the impulse response is

h(t) =
ds(t)

dt
= u(t)− u(t− 1)

Copyright 2014, Elsevier, Inc. All rights reserved.
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2.15 (a) x1(t) = x(t) − x(t − 2) so y1(t) = y(t) − y(t − 2), two triangular pulses, the second multiplied
by −1.

x1(t) y1(t)

x2(t)
y2(t)

tt

t t

1

1

1

1

2 2

2

3 4

�1

�1

�1 �1

1

1

�1

Figure 2.6: Problem 15

(b) x2(t) = x(t+ 1)− x(t) then y2(t) = y(t+ 1)− y(t) (they overlap between 0 and 1).

(c) x3(t) = δ(t) − δ(t − 1) so y3(t) = dy(t)/dt = u(t) − 2u(t − 1) + u(t − 2). Considering that
the output of x(t) is y(t), i.e., y(t) = S[x(t)], and that the integrator and the differentiator are
LTI systems Fig. 2.7 shows how to visualize the result in this problem by considering that you can
change the order of the cascading of LTI systems.

x3(t) =
dx(t)

dt

x(t) y(t)
dy(t)

dtZ
d

dt

| {z }
1

x3(t) =
dx(t)

dt

dy(t)

dtZ
d

dt
S S

dy(t)

dt

⌘

Figure 2.7: Problem 15

Copyright 2014, Elsevier, Inc. All rights reserved.
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2.18 (a) For x1(t) = u(t)− u(t− 2) and zero initial conditions, we can use the convolution integral

y1(t) =

∫ t

0

h(τ)x1(t− τ)dτ

=
∞∑

k=0

∫ t

0

h1(τ − 2k)x(t− τ)dτ

for k = 0, we find graphically the integral to be

z(t) =

∫ t

0

h1(τ)x1(t− τ)dτ = r(t)− 2r(t− 1) + 2r(t− 3)− r(t− 4)

graphically. So that

y1(t) =
∞∑

k=0

z(t− 2k) = r(t)− 2r(t− 1) + r(t− 2)

(b) For x2(t) = δ(t)− δ(t− 2), the output is

y2(t) = h(t)− h(t− 2)

=

∞∑

k=0

h1(t− 2k)−
∞∑

k=0

h1(t− 2(k + 1))

= h1(t) +
∞∑

k=1

h1(t− 2k)−
∞∑

k′=1

h1(t− 2k′)

= h1(t)

where we changed to the variable k′ = k + 1 in the second summation.
Also since x2(t) = dx1(t)/dt the output

y2(t) =
dy1(t)

dt
= u(t)− 2u(t− 1) + u(t− 2) = h1(t)

Copyright 2014, Elsevier, Inc. All rights reserved.
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