Chapter 1

Continuous–time Signals

1.1 Basic Problems

1.1 Notice that 0.5[x(t) + x(-t)], the even component of x(t), is discontinuous at t = 0, it is 1 at t = 0 but 0.5 at t ± ε for ε → 0. Likewise the odd component of x(t), or 0.5[x(t) - x(-t)], must be zero at t = 0 so that when added to the even component one gets x(t). z(t) equals x(t). See Fig. 1.

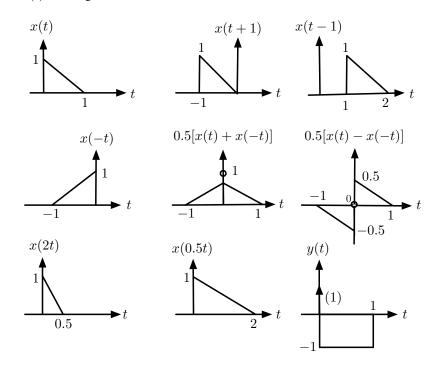


Figure 1.1: Problem 1

ii. Yes, the even component of x(t) is

 $\begin{array}{c} \textbf{1.3} \\ \textbf{(a) We have that} \\ \textbf{(3rd ed)1.2} \\ \vdots \\ \textbf{u(t) is a} \end{array}$

i. x(t) is causal because it is zero for t < 0. It is neither even nor odd.

(4th ed) 1.3

 $\begin{array}{rcl} x_e(t) & = & 0.5[x(-t)+x(t)] \\ & = & 0.5[e^t u(-t)+e^{-t} u(t)] = 0.5e^{-|t|} \end{array}$

- (b) $x(t) = \cos(t) + j\sin(t)$ is a complex signal, $x_e(t) = 0.5[e^{jt} + e^{-jt}] = \cos(t)$ so $x_o(t) = j\sin(t)$.
- (c) The product of the even signal x(t) with the sine, which is odd, gives an odd signal and because of this symmetry the integral is zero.
- (d) Yes, because $x(t) + x(-t) = 2x_e(t)$, i.e., twice the even component of x(t), and multiplied by the sine it is an odd function.

1.4 The signal x(t) = t[u(t) - u(t-1)] so that its reflection is (3rd ed) 1.3 (4th ed) 1.4 v(t) = x(-t) = -t[u(-t) - u(-t-1)]

and delaying v(t) by 2 is

$$\begin{array}{lll} y(t) &=& v(t-2) = -(t-2)[u(-(t-2)) - u(-(t-2) - 1)] \\ &=& (-t+2)[u(-t+2) - u(-t+1)] = (2-t)[u(t-1) - u(t-2)] \end{array}$$

On the other hand, the delaying of x(t) by 2 gives

$$w(t) = x(t-2) = (t-2)[u(t-2) - u(t-3)]$$

which when reflected gives

$$z(t) = w(-t) = (-t-2)[u(-t-2) - u(-t-3)]$$

Comparing y(t) and z(t) we can see that these operations do not commute, that the order in which these operations are done cannot be changed, so that $y(t) \neq z(t)$ as shown in Fig. 1.4.

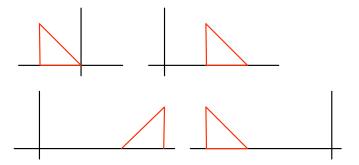


Figure 1.4: Problem 4: Reflection and delaying do not commute, $y(t) \neq z(t)$.

Chaparro - Signals and Systems using MATLAB

1.6 (a) Using
$$\Omega_0 = 2\pi f_0 = 2\pi/T_0$$
 for

(3rd ed) 1.4 (4th ed) 1.5

i.
$$\cos(2\pi t)$$
: $\Omega_0 = 2\pi$ rad/sec, $f_0 = 1$ Hz and $T_0 = 1$ sec

ii. $\sin(t - \pi/4)$: $\Omega_0 = 1$ rad/sec, $f_0 = 1/(2\pi)$ Hz and $T_0 = 2\pi$ sec. iii. $\tan(\pi t) = \sin(\pi t)/\cos(\pi t)$: $\Omega_0 = \pi$ rad/sec, $f_0 = 1/2$ Hz and $T_0 = 2$ sec.

- (b) The fundamental period of $\sin(t)$ is $T_0 = 2\pi$, and $T_1 = 2\pi/3$ is the fundamental period of $\sin(3t)$, $T_1/T_0 = 1/3$ so $3T_1 = T_0 = 2\pi$ is the fundamental period of z(t).
- (c) i. y(t) is periodic of fundamental period T₀ = 1.
 ii. w(t) = x(2t) is x(t) compressed by a factor of 2 so its fundamental period is T₀/2 = 1/2, the fundamental period of z(t).
 - iii. v(t) has same fundamental period as x(t), $T_0 = 1$, indeed $v(t + kT_0) = 1/x(t + kT_0) = 1/x(t)$.
- (d) i. $x(t) = 2\cos(t)$, $\Omega_0 = 2\pi f_0 = 1$ so $f_0 = 1/(2\pi)$ ii. $y(t) = 3\cos(2\pi t + \pi/4)$, $\Omega_0 = 2\pi f_0 = 2\pi$ so $f_0 = 1$ iii. $c(t) = 1/\cos(t)$, of fundamental period $T_0 = 2\pi$, so $f_0 = 1/(2\pi)$.
- (e) $z_e(t)$ is periodic of fundamental period T_0 , indeed

$$z_e(t+T_0) = 0.5[z(t+T_0) + z(-t-T_0))]$$

= 0.5[z(t) + z(-t)]

Same for $z_o(t)$ since $z_o(t) = z(t) - z_e(t)$.

1.8 (a) x(t) is a causal decaying exponential with energy (3rd ed) 1.6 (4th ed) 1.7 $E_x = \int_{-\infty}^{\infty} \epsilon$

$$E_x = \int_0^\infty e^{-2t} dt = \frac{1}{2}$$

and zero power as

$$P_x = \lim_{T \to \infty} \frac{E_x}{2T} = 0$$

(b)

$$E_z = \int_{-\infty}^{\infty} e^{-2|t|} dt = 2 \underbrace{\int_{0}^{\infty} e^{-2t} dt}_{E_{z_1}}$$

(c) i. If $y(t) = \text{sign}[x_1(t)]$, it has the same fundamental period as $x_1(t)$, i.e., $T_0 = 1$ and y(t) is a train of pulses so its energy is infinite, while

$$P_y = \int_0^1 1 \, dt = 1$$

ii. Since $x_2(t) = \cos(2\pi t - \pi/2) = \cos(2\pi (t - 1/4)) = x_1(t - 1/4)$, the energy and power of $x_2(t)$ coincide with those of $x_1(t)$.

(d) $v(t) = x_1(t) + x_2(t)$ is periodic of fundamental period $T_0 = 2\pi$, and its power is

$$P_v = \frac{1}{2\pi} \int_0^{2\pi} (\cos(t) + \cos(2t))^2 dt = \frac{1}{2\pi} \int_0^{2\pi} (\cos^2(t) + \cos^2(2t) + 2\cos(t)\cos(2t)) dt$$

Using

$$\cos^{2}(\theta) = \frac{1}{2} + \frac{1}{2}\cos(2\theta)$$
$$\cos(\theta)\cos(\phi) = \frac{1}{2}(\cos(\theta + \phi) + \cos(\theta - \phi))$$

we have

$$P_{v} = \underbrace{\frac{1}{2\pi} \int_{0}^{2\pi} \cos^{2}(t)dt}_{P_{x_{1}}} + \underbrace{\frac{1}{2\pi} \int_{0}^{2\pi} \cos^{2}(2t)dt}_{P_{x_{2}}} + \underbrace{\frac{1}{2\pi} \int_{0}^{2\pi} 2\cos(t)\cos(2t)dt}_{0}}_{0}$$
$$= \frac{1}{2} + \frac{1}{2} + 0 = 1$$

(e) Power of x(t)

$$P_x = \frac{1}{T_0} \int_0^{T_0} x^2(t) dt$$

= $\int_0^1 \cos^2(2\pi t) dt$
= $\int_0^1 (1/2 + \cos^2(4\pi t)) dt = 0.5 + 0 = 0.5$

Copyright 2014, Elsevier, Inc. All rights reserved.

Power of f(t)

$$P_{f} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} y^{2}(t) dt$$
$$= \lim_{N \to \infty} \frac{1}{2(NT_{0})} \int_{0}^{NT_{0}} y^{2}(t) dt$$
$$= \frac{1}{2T_{0}} \int_{0}^{T_{0}} y^{2}(t) dt = 0.5P_{s}$$

1.10

1.10 (a) Let $x(t) = x_1(t) + x_2(t) = \cos(2\pi t) + 2\cos(\pi t)$, so that $x_1(t)$ is a cosine of frequency $\Omega_1 = 2\pi$ or (3rd ed) 1.8 period $T_1 = 1$, and $x_2(t)$ is a cosine of frequency $\Omega_2 = \pi$ or period $T_2 = 2$. The ratio of these periods $T_2/T_1 = 2/1$ is a rational number so x(t) is periodic of fundamental period $T_0 = 2T_1 = T_2 = 2$. (4th ed) 1.9

The average power of x(t) is given by

$$P_x = \frac{1}{T_0} \int_0^{T_0} x^2(t) dt = \frac{1}{2} \int_0^2 [x_1^2(t) + x_2^2(t) + 2x_1(t)x_2(t)] dt$$

Using the trigonometric identity $\cos(\alpha)\cos(\beta) = \cos(\alpha - \beta) + \cos(\alpha + \beta)$ we have that the integral

$$\frac{1}{2} \int_0^2 2x_1(t)x_2(t)dt = \frac{1}{2} \int_0^2 4\cos(2\pi t)\cos(\pi t)dt$$
$$= \int_0^2 [\cos(\pi t) + \cos(3\pi t)]dt = 0$$

since $\cos(\pi t) + \cos(3\pi t)$ is periodic of period 2 and so its area under a period is zero. Thus,

$$P_x = \frac{1}{2} \int_0^2 [x_1^2(t) + x_2^2(t)] dt$$

= $\frac{1}{2} \int_0^2 x_1^2(t) dt + \frac{1}{2} 2 \int_0^1 x_2^2(t) dt$
= $P_{x_1} + P_{x_2}$

so that the power of x(t) equals the sum of the powers of $x_1(t)$ and $x_2(t)$ which are sinusoids of different frequencies, and thus orthogonal as we will see later. Finally,

$$P_x = \frac{1}{2} \int_0^2 \cos^2(2\pi t) dt + \int_0^1 4 \cos^2(\pi t) dt$$

= $\frac{1}{2} \int_0^2 [0.5 + 0.5 \cos(4\pi t)] dt + \int_0^1 4 [0.5 + 0.5 \cos(2\pi t)] dt$
= $0.5 + 2 = 2.5$

remembering that the integrals of the cosines are zero (they are periodic of period 0.5 and 1 and the integrals compute their areas under one or more periods, so they are zero).

(b) The components of y(t) have as periods $T_1 = 2\pi$ and $T_2 = 2$ so that $T_1/T_2 = \pi$ which is not rational so y(t) is not periodic. In this case we need to find the power of y(t) by finding the integral over an infinite support of $y^2(t)$ which will as before give

$$P_y = P_{y_1} + P_{y_2}$$

In the case of harmonically related signals we can use the periodicity and compute one integral. However, in either case the power superposition holds.

1.13 (a) The signal x(t) is (3rd ed) 1.9 (4th ed) 1.12

$$x(t) = \begin{cases} 0 & t < -1 \\ t+1 & -1 \le t \le 0 \\ -1 & 0 < t \le 1 \\ 0 & t > 1 \end{cases}$$

there are discontinuities at t = 0 and at t = 1. The derivative

$$y(t) = \frac{dx(t)}{dt}$$

= $u(t+1) - u(t) - 2\delta(t) + \delta(t-1)$

indicating the discontinuities at t = 0, a decrease from 1 to -1, and at t = 1 an increase from -1 to 0.

(b) The integral

$$\int_{-\infty}^{t} y(\tau) d\tau = \int_{-\infty}^{t} [u(\tau+1) - u(\tau) - 2\delta(\tau) + \delta(\tau-1)] d\tau = x(t)$$

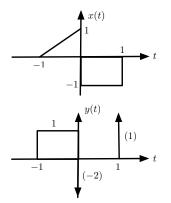


Figure 1.8: Problem 13

1.15 (a) The signal x(t) = t for $0 \le t \le 1$, zero otherwise. Then (3rd ed) 1.11 (4th ed) 1.14

$$x(2t) = \begin{cases} 2t & 0 \le 2t \le 1 \text{ or } 0 \le t \le 1/2 \\ 0 & \text{otherwise} \end{cases}$$

that is, the signal has been compressed — instead of being between 0 and 1, it is now between 0 and 0.5. (b) Likewise, the signal

$$x(t/2) = \begin{cases} t/2 & 0 \le t/2 \le 1 \text{ or } 0 \le t \le 2\\ 0 & \text{otherwise} \end{cases}$$

i.e., the signal has been expanded, its support has doubled.

The following figure illustrates the compressed and expanded signals x(2t) and x(t/2).

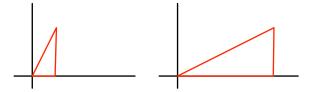


Figure 1.9: Problem 15: Compressed x(2t), expanded x(t/2) signals.

(c) If the acoustic signal is recorded in a tape, we can play it faster (contraction) or slower (expansion) than the speed at which it was recorded. Thus the signal can be made to last a desired amount of time, which might be helpful whenever an allocated time is reserved for broadcasting it.

1.16 (a) Because of the discontinuity of x(t) at t = 0 the even component of x(t) is a triangle with $x_e(0) = 1$, (3rd ed) 1.12 i.e.,

(4th ed) 1.15

$$x_e(t) = \begin{cases} 0.5(1-t) & 0 < t \le 1\\ 0.5(1+t) & -1 \le t < 0\\ 1 & t = 0 \end{cases}$$

while the odd component is

$$x_o(t) = \begin{cases} 0.5(1-t) & 0 < t \le 1\\ -0.5(1+t) & -1 \le t < 0\\ 0 & t = 0 \end{cases}$$

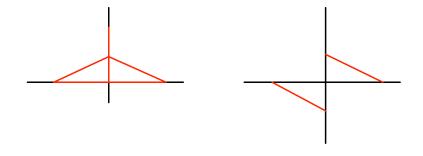


Figure 1.10: Problem 16: Even and odd decomposition of x(t).

(b) The energy of x(t) is

$$\int_{-\infty}^{\infty} x^2(t)dt = \int_{-\infty}^{\infty} [x_e(t) + x_o(t)]^2 dt$$
$$= \int_{-\infty}^{\infty} x_e^2(t)dt + \int_{-\infty}^{\infty} x_o^2(t)dt + 2\int_{-\infty}^{\infty} x_e(t)x_o(t)dt$$

where the last equation on the right is zero, given that the integrand is odd. (c) The energy of x(t) = 1 - t, $0 \le t \le 1$ and zero otherwise, is given by

$$\int_{-\infty}^{\infty} x^2(t)dt = \int_0^1 (1-t)^2 dt = t - t^2 + \frac{t^3}{3} \Big|_0^1 = \frac{1}{3}$$

The energy of the even component is

$$\int_{-\infty}^{\infty} x_e^2(t)dt = 0.25 \int_{-1}^{0} (1+t)^2 dt + 0.25 \int_{0}^{1} (1-t)^2 dt = 0.5 \int_{0}^{1} (1-t)^2 dt$$

where the discontinuity at t = 0 does not change the above result. The energy of the odd component is

$$\int_{-\infty}^{\infty} x_o^2(t)dt = 0.25 \int_{-1}^{0} (1+t)^2 dt + 0.25 \int_{0}^{1} (1-t)^2 dt = 0.5 \int_{0}^{1} (1-t)^2 dt$$

so that

$$E_x = E_{x_e} + E_{x_o}$$

Copyright 2014, Elsevier, Inc. All rights reserved.

1.17 (a) The function g(t) corresponding to the first period of x(t) is given by (3rd ed) 1.13 (4th ed) 1.16 g(t) = u(t) - 2u(t-1) + u(t-2)

(b) The periodic signal x(t) is

$$x(t) = g(t) + g(t-2) + g(t-4) + \cdots + g(t+2) + g(t+4) + \cdots = \sum_{k=-\infty}^{\infty} g(t+2k)$$

(c) Yes, the signals y(t), z(t) and v(t) are periodic of period $T_0 = 2$ as can be easily verified. (d) The derivative of x(t) is

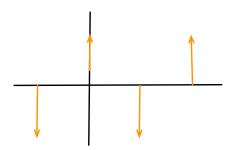


Figure 1.11: Problem 17: Derivative of x(t).

$$w(t) = 2\delta(t) - 2\delta(t-1) + 2\delta(t-2) + \cdots - 2\delta(t+1) + 2\delta(t+2) + \cdots$$

which can be seen to be periodic of period $T_0 = 2$.

1.20