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Question 1a

a) Given the signals
x [n] = u[n + 2]− u[n − 2] , h[n] = [· · · , 0, 1 , −2, 0, 0, · · · ] .
Determine y [n] = x [n] ∗ h[n] using the convolution sum (in
time-domain).

y [n] =
∑
k

h[k]x [n − k]

h[0]x [n] : · · · 0 1 1 1 1 0 0 0 · · ·
h[1]x [n − 1] : · · · 0 0 −2 −2 −2 −2 0 0 · · ·
y [n] : · · · 0 1 −1 −1 −1 −2 0 0 · · ·
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Question 1b

b) Given x [n] = u[n]− ( 1
2 )nu[n− 4]. Determine X (z) and also specify

the ROC.

x [n] = u[n]− (
1

2
)4(

1

2
)n−4u[n − 4]

X (z) =
1

1− z−1
−

( 1
2 )4z−4

1− 1
2z
−1

ROC: {|z | > 1}
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Question 1c

c) Given x [n] = anu[n] with |a| < 1. Determine y [n] = x [n] ∗ x [−n].
(Use the z-transform.)

x [n] = anu[n] → X (z) =
1

1− az−1
ROC: {|z | > a}

x [−n] = a−nu[−n] → X (z−1) =
1

1− az
ROC: {|z | < 1/a}

Result of the convolution in z-domain is a product:

Y (z) =
1

1− az−1
· 1

1− az
ROC: {a < |z | < 1/a}

19 part 2 exam jan 2024 4 / 20



Question 1c

c) Given x [n] = anu[n] with |a| < 1. Determine y [n] = x [n] ∗ x [−n].
(Use the z-transform.)

x [n] = anu[n] → X (z) =
1

1− az−1
ROC: {|z | > a}

x [−n] = a−nu[−n] → X (z−1) =
1

1− az
ROC: {|z | < 1/a}

Result of the convolution in z-domain is a product:

Y (z) =
1

1− az−1
· 1

1− az
ROC: {a < |z | < 1/a}

19 part 2 exam jan 2024 4 / 20



Question 1c (continued)
To recover y [n], we need to apply a partial fraction expansion, therefore
we first write the function using polynomials in z or z−1 (but not both).
Hence:

Y (z) =
z

(z − a)(1− az)
=

A

z − a
+

B

1− az
=

1

1− a2

(
a

z − a
+

1

1− az

)
Check the ROC to determine which part is causal and which part is
anti-causal. The first term (with ROC: {|z | > a}) is causal and
therefore we write it in terms of z−1. The second term (with ROC:
{|z | < 1/a}) is anti-causal and we keep it in terms of z . This results in:

Y (z) =
1

1− a2

(
az−1

1− az−1
+

1

1− az

)
=

1

1− a2

(
1

1− az−1
− 1 +

1

1− az

)

y [n] =
1

1− a2

(
anu[n]− δ[n] + a−nu[−n]

)
=

a|n|

1− a2
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Question 1

d) Determine, if it exists, the frequency response H(e jω) for the
system defined by the difference equation

y [n] = 1.6y [n − 1]− 0.64y [n − 2] + x [n]− x [n − 2]

First apply a z-transform:

Y (z)(1− 1.6z−1 + 0.64z−2) = X (z)(1− z−2)

H(z) =
1− z−2

1− 1.6z−1 + 0.64z−2
=

1− z−2

(1− 0.8z−1)2
ROC: |z | > 0.8

The poles are z1,2 = 0.8 (double), the unit circle is in the ROC and the
Fourier transform exists. This results in

H(e jω) =
1− e−2jω

(1− 0.8e−jω)2
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Question 1

e) Given an LTI system with transfer function H(z) = 1− 2z−1.
Determine a (bounded) input signal x [n] for which the output
signal is equal to y [n] = δ[n] + 1

2δ[n − 1].

Y (z) = 1 +
1

2
z−1

X (z) =
Y (z)

H(z)
=

1 + 1
2z
−1

1− 2z−1

Because we require a bounded x [n], the ROC is {|z | < 2} which gives
an anti-causal sequence. Therefore we rewrite X (z) as

X (z) =
z(1 + 1

2z
−1)

z − 2
= −1

2

1
2 + z

1− 1
2z

= −1

2

(
1

2
+

5

4

z

1− 1
2z

)

x [n] = −1

2

(
1

2
δ[n] +

5

4
(

1

2
)−n−1u[−n − 1]

)
= −1

4
δ[n]+

5

8
(

1

2
)−n−1u[−n−1]

(This could be written in several equivalent ways, depending on how
you rewrite X (z).)
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Question 2

The transfer function of a causal LTI system is given by

H(z) =
z − 1

z(z + 0.9)

a) Determine all poles and zeros of the system and make a drawing in
the complex z-plane.

b) Specify the ROC.

c) Is the system BIBO stable? (Why?)

d) Draw, based on the poles and zeros of H(z), the amplitude
response. Is this a low-pass, high-pass or other kind of filter?
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Question 2: Solutions

a) Poles: z = 0, z = −0.9. Zeros: z = 1, z =∞.

z-plane

1−1

j

−j

b) Causal results in ROC: |z | > 0.9.

c) Unit circle in ROC: BIBO stable.
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Question 2: Solutions (continued)

d)

−4 −3 −2 −1 0 1 2 3 4
0

5

10

15

20

25

ω

|H
(ω

)|

High-pass. Zero at z = 1 results in H(e jω) = 0 for ω = 0. The
pole at z = −0.9 results in a peak for ω = ±π. The pole at z = 0
only has an effect on the phase. Compute: H(e jπ) = H(1) = 20.
The shown plot should be symmetric and either plot from −π to π,
or show periodicity outside this interval.
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Question 3
An analog signal xa(t) with Fourier transform Xa(Ω) is band-limited at
10 kHz. The signal is sampled without aliasing at a sampling frequency
Fs , resulting in the discrete-time signal x [n]. The spectrum X (ω) of
x [n] is shown below:

−2π

1

X (ω)

− 2
3π

2
3π 2π → ω0

a) What is the relation between Ω and ω?

b) Which sampling frequency was used?

c) What is the smallest frequency at which we can sample xa(t)
without aliasing?
For this case, draw the resulting spectrum.
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Question 3: solutions

a) ω = ΩTs .
This standard result could be rederived if you recall that
ω = 2π ↔ Ω = 2πFs . This results in Ω = ωFs i.e., ω = ΩTs .

b) ω = 2
3π results in Ω = 2

3πFs . At F = 10 kHz we find

F =
Ω

2π
=

2
3πFs

2π
=

1

3
Fs = 10kHz

hence Fs = 30 kHz.
c) Fs = 20 kHz.

−2π

X (ω)

π → ω−π 2π0

2
3

(Regarding the peak amplitude: use that sampling at Ts will scale
the amplitude by 1/Ts = Fs .)
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Question 3 (continued)

d) Consider the initial sampling rate. After sampling, xa(t) is
reconstructed from x [n] by means of an ideal D/A converter and a
low-pass filter. Specify the pass-band and stop-band frequencies of
the filter.

After D/A conversion, the signal is analog. In the frequency spectrum,
the frequency ωp = 2

3π corresponds to Fp = 10 kHz, and the frequency
ωs = 4

3π corresponds to Fstop = 20 kHz. The low-pass filter (in the
analog domain! no periodicity) thus has a pass-band running until 10
kHz and a stop-band starting at 20 kHz.

0−10 10 30 → F [kHz]−30 20−20

Xa(F )
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Question 4
Given the realizations:

z−1

x [n]

y [n]x [n]

y [n]
c0

c1

z−1

z−1

b1

b2

a1 a2

z−1

a) Determine a1, a2 and c0, c1 in terms of b1, b2 such that both
systems are equivalent.

b) Are these minimal realizations?

19 part 2 exam jan 2024 14 / 20



Question 4: solutions

a) First realization:

H(z) =
1

1− b1z−1
+

1

1− b2z−1
=

2− (b1 + b2)z−1

(1− b1z−1)(1− b2z−1)

Second realization:

H(z) =
1

1− a1z−1
· c0 + c1z

−1

1− a2z−1
=

c0 + c1z
−1

(1− a1z−1)(1− a2z−1)

From this it follows that
a1 = b1, a2 = b2, c0 = 2, c1 = −(b0 + b1).

b) Both are minimal because the number of delays in the realization is
equal to the filter order of H(z).
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Question 4: solutions (continued)

H(z) =
2− (b1 + b2)z−1

(1− b1z−1)(1− b2z−1)

c) Draw the “direct form no. II” realization and also specify the
coefficients.

−b1b2

x [n] y [n]
2

b1 + b2 −(b1 + b2)

z−1

z−1
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Question 5
A “template” third-order Butterworth filter has the transfer function

H(s) =
1

s3 + 2s2 + 2s + 1

The corresponding frequency response is |H(jΩ)|2 =
1

1 + Ω6
.

a) Which frequency transform should we apply to the template to
construct a low-pass Butterworth filter with a 3dB cut-off
frequency of Ωc?

b) What is the corresponding transfer function G (s)?

a) Substitute Ω→ Ω

Ωc
.

b) Substitute s → s

Ωc
, this results in

G (s) =
1

( s
Ωc

)3 + 2( s
Ωc

)2 + 2( s
Ωc

) + 1
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Question 5: (continued)

We now design an analog 3rd order low-pass Butterworth filter with a
pass-band frequency of 3 rad/s, a stop-band frequency of 6 rad/s and a
maximal damping in the pass-band of 0.5 dB.

c) Give a suitable expression for the frequency response
(squared-amplitude) of this filter and determine its parameters.

d) For this filter, what is the minimal damping in the stop-band ?

e) Which transform should be applied to |H(jΩ)|2 to obtain this filter?
Determine the corresponding transfer function.
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Question 5: solutions

c) The general expression is

|H(jΩ)|2 =
1

1 + ε2( Ω
Ωp

)6

For Ω = Ωp = 3 we obtain

1

1 + ε2
= 10−0.5/10 ⇒ ε = 0.3493

d) For Ω = Ωs = 6 we obtain

1

1 + ε2( 6
3 )6

= 0.1135
.

= −9.45 dB

The stopband damping is 9.45 dB.
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Question 5: solutions (continued)

e) First, we determine Ωc :

(
Ω

Ωc
)6 = ε2

(
Ω

Ωp

)6

⇒ Ωc =
Ωp

ε1/3
= 4.26 rad/s

The transformation is Ω→ Ω
4.26 = 0.235Ω.

The transfer function of the requested Butterworth filter is:

H(s) =
1

( s
4.26 )3 + 2( s

4.26 )2 + 2( s
4.26 ) + 1
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