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I We have seen that the exponential signal is an eigensignal of an
LTI system

I We now focus on periodic signals and use this exponential signal to
describe such functions

I Recall that a signal x(t) is periodic if there exists a T > 0 such that

x(t+ T ) = x(t) for all t ∈ R

I T is called a period of the signal
I The smallest period is denoted as T0 and is called the fundamental

period
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I We start by constructing periodic signals using exponential signals
as building blocks

I Let us start with the signal

x1(t) = X1e
jΩ0t +X−1e

−jΩ0t

> X1 and X−1 are complex numbers
> Ω0 [rad/s] is the fundamental frequency of the signal
> The signal has a fundamental period

T0 = 2π
Ω0
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I We provide the numbers X1 and X−1 to realize the signal x1(t)

I Example: X1 = X−1 = 1/2:

x1(t) = cos(Ω0t)

I Example: X1 = X∗−1 = 1
2j :

x1(t) = sin(Ω0t)
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I What if we add a constant?

x1(t) = X0 +X1e
jΩ0t +X−1e

−jΩ0t

I Signal is still periodic with fundamental period T0

I What if we add additional powers of the exponential signal?

xN (t) =
N∑

k=−N
Xke

jkΩ0t

I Signal is still periodic with fundamental period T0
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I Note the procedure up till now:

We provide the Xk’s to construct xN (t)

I Now the other way around
I Suppose

> we know xN (t)
> and we know that xN (t) can be written in the form

xN (t) =
N∑

k=−N

Xke
jkΩ0t

I We do not know the coefficients Xk, however
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I How do we determine these coefficients?
I Step 1: Start with

xN (t) =
N∑

k=−N
Xke

jkΩ0t

I Step 2: Multiply this equation by e−jmΩ0t, m an integer, |m| ≤ N

e−jmΩ0txN (t) =
N∑

k=−N
Xke

j(k−m)Ω0t
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I Integrate over a single period:∫ t0+T0

t=t0
e−jmΩ0txN (t) dt =

∫ t0+T0

t=t0

N∑
k=−N

Xke
j(k−m)Ω0t dt

=
N∑

k=−N
Xk

∫ t0+T0

t=t0
ej(k−m)Ω0t dt

I Since ∫ t0+T0

t=t0
ej(k−m)Ω0t dt =

{
T0 m = k

0 m 6= k
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I We are left ∫ t0+T0

t=t0
e−jmΩ0txN (t) dt = T0Xm

I and find

Xm = 1
T0

∫ t0+T0

t=t0
xN (t)e−jmΩ0t dt, m = 0,±1,±2, ...,±N

I We have found the coefficients!
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Conclusion:
I A periodic signal xN (t) is given and it is known that it can be

written in the form

xN (t) =
N∑

k=−N
Xke

jkΩ0t (∗)

I The coefficients can be determined as

Xk = 1
T0

∫ t0+T0

t=t0
xN (t)e−jkΩ0t dt, k = 0,±1,±2, ...,±N

I The signal of Eq. (∗) is known as a finite Fourier series
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I Note that xN (t) is a very smooth function of time
I It can be differentiated arbitrarily often and the resulting signal is

continuous again
I Now what if we have a periodic signal with a discontinuity?
I Or what if we have a periodic signal with a derivative that has a

discontinuity?
I Or what if we have a periodic signal for which its nth derivative

(n ≥ 1) has a discontinuity?
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I To make a chance of representing such signals by exponential
signals, we take an infinite number of exponential expansion signals

I We write

x(t) =
∞∑

k=−∞
Xke

jkΩ0t

with

Xk = 1
T0

∫ t0+T0

t=t0
x(t)e−jkΩ0t dt, k = 0,±1,±2, ...

I This is the complex exponential Fourier series of the periodic
signal x(t)
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I Some remarks about convergence
I When discussing convergence of the Fourier series, the basic

question to answer is:

> What happens to the partial sums

xN (t) =
N∑

k=−N

Xke
jkΩ0t as N →∞?
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I Pointwise convergence: Let x(t) be a periodic signal with
fundamental period T0. The signal is piecewise continuous with a
piecewise continuous derivative.

I If x(t) is continuous at t = t0, then

x(t0) = lim
N→∞

xN (t0) =
∞∑

k=−∞
Xke

jkΩ0t0

I If x(t) has a jump discontinuity at t = t0 with left limit x(t−0 ) and
right limit x(t+0 ), then

x(t−0 ) + x(t+0 )
2 = lim

N→∞
xN (t0) =

∞∑
k=−∞

Xke
jkΩ0t0
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I Other convergence definitions
I Uniform convergence:

max
t0≤t≤t0+T0

|x(t)− xN (t)| → 0 as N →∞

Loosely speaking, when the signal xN (t) converges uniformly to
x(t), then the graph of xN (t) “stays close” to the graph of x(t) on
the complete interval t0 ≤ t ≤ t0 + T0
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I Convergence in the sense that the average quadratic error tends to
zero as N →∞:

lim
N→∞

1
T0

∫ t0+T0

t=t0
|x(t)− xN (t)|2 dt = 0

I Type of convergence depends on the signal
I Uniform convergence is the strongest type of convergence. It

implies pointwise and averaged squared error convergence
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I Gibb’s phenomenon

x(t) =
{

1 0 < t < 1/2,
−1 1/2 < t < 1
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I Recall that the power of a periodic signal x(t) is given by

Px = 1
T0

∫ t0+T0

t=t0
|x(t)|2 dt

I If x(t) is square integrable then Px <∞
I For x(t) we have the Fourier series representation

x(t) =
∞∑

k=−∞
Xke

jkΩ0t
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I For its complex conjugate, we have

x∗(t) =
∞∑

m=−∞
X∗me

−jmΩ0t

I Consequently,

|x(t)|2 = x(t)x∗(t)

=
∞∑

k=−∞

∞∑
m=−∞

XkX
∗
me

j(k−m)Ω0t
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I Substitution gives

Px = 1
T0

∫ t0+T0

t=t0

∞∑
k=−∞

∞∑
m=−∞

XkX
∗
me

j(k−m)Ω0t dt

= 1
T0

∞∑
k=−∞

∞∑
m=−∞

XkX
∗
m

∫ t0+T0

t=t0
ej(k−m)Ω0t dt
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I Since ∫ t0+T0

t=t0
ej(k−m)Ω0t dt =

{
T0 m = k

0 m 6= k

I we arrive at

Px =
∞∑

k=−∞
|Xk|2

I This is Parseval’s power relation
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I Parseval’s power relation stated differently
I Write

x(t) =
∞∑

k=−∞
xk(t) with xk(t) = Xke

jkΩ0t

I We have
Pxk

= |Xk|2

I In words: the power of the signal x(t) is equal to the sum of
powers of its Fourier series components
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I Power line spectrum:
Plot |Xk|2 vs. kΩ0, k = 0,±1,±2, ... .

I Magnitude line spectrum:
Plot |Xk| vs. kΩ0, k = 0,±1,±2, ... .

I Phase line spectrum:
Plot ∠Xk vs. kΩ0, k = 0,±1,±2, ... .
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I Consider a signal that is square integrable, that is, it has finite
power

I Parseval’s power relation
∞∑

k=−∞
|Xk|2 = Px <∞

I The sum on the left-hand side converges
I Consequently,

|Xk|2 → 0 as k ±∞
I In words: the Fourier coefficients tend to zero as k → ±∞
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I It can be shown that if the signal is absolutely integrable then

lim
k→∞

Xk = 0

as well. This is the famous Riemann-Lebesgue lemma
I Can we say something about how fast the coefficients tend to zero

as k → ±∞?
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I For simplicity, consider a signal x(t)
> having a jump discontinuity at t = t̃, t0 < t̃ < t0 + T0

> Left limit: x(t̃−), right limit: x(t̃+)
> No jumps at the end points: x(t0) = x(t0 + T0)
> Away from t̃, x(t) has continuous derivatives up to any desired

order
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I For the Fourier coeffcients, we have

Xk = 1
T0

∫ t0+T0

t=t0
x(t)e−jkΩ0t dt

= 1
T0

∫ t̃

t=t0
x(t)e−jkΩ0t dt+ 1

T0

∫ t0+T0

t=t̃
x(t)e−jkΩ0t dt
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I First integral. Integration by parts gives

1
T0

∫ t̃

t=t0
x(t)e−jkΩ0t dt = 1

j2πke
−jkΩ0t0x(t0)

− 1
j2πke

−jkΩ0 t̃
−
x(t̃−)

+ 1
j2πk

∫ t̃

t=t0
x′(t)e−jkΩ0t dt

I where we have used T0Ω0 = 2π
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I Second integral. Integration by parts gives

1
T0

∫ t0+T0

t=t̃
x(t)e−jkΩ0t dt = 1

j2πke
−jkΩ0 t̃

+
x(t̃+)

− 1
j2πke

−jkΩ0t0x(t0 + T0)

+ 1
j2πk

∫ t0+T0

t=t̃
x′(t)e−jkΩ0t dt

I where we have used T0Ω0 = 2π
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I Consequently,

Xk = 1
j2πke

−jkΩ0tx(t)
∣∣∣∣t̃+
t̃−

+ 1
j2πk

∫ t0+T0

t=t0
x′(t)e−jkΩ0t dt

I Since x(t) has a jump discontinuity at t = t̃, the first term on the
right-hand side does not vanish

I We conclude that the Fourier coeffcient Xk must at least have a
1/k term
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I Now what if x(t) is continuous at t = t̃, but its derivative has a
jump discontinuity at t = t̃?

I Since x(t) is continuous at t = t̃, the first term on the right-hand
side now vanishes

I In this case, we have

Xk = 1
j2πk

∫ t0+T0

t=t0
x′(t)e−jkΩ0t dt

I Follow a similar procedure as above (integrate by parts again)
I In this case, we find that the Fourier coeffcient Xk must at least

have a 1/k2 term
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I Summary:

I x(t) has a jump discontinuity at t = t̃:
Xk should at least have a 1/k term

I x(t) is continuous, but x′(t) has a jump discontinuity at t = t̃:
Xk should at least have a 1/k2 term

I x(t) and x′(t) are continuous, but x′′(t) has a jump discontinuity
at t = t̃:

Xk should at least have a 1/k3 term

I and so on
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I We rewrite the complex Fourier series expansion in terms of
cos/sin expansion functions

I The analysis is straightforward

x(t) =
∞∑

k=−∞
Xke

jkΩ0t

=
−1∑

k=−∞
Xke

jkΩ0t +X0 +
∞∑
k=1

Xke
jkΩ0t

= X0 +
∞∑
k=1

X−ke
−jkΩ0t +

∞∑
k=1

Xke
jkΩ0t
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I We now use Euler’s formula to obtain

x(t) = X0 +
∞∑
k=1

X−k[cos(kΩ0t)− j sin(kΩ0t)]

+
∞∑
k=1

Xk[cos(kΩ0t) + j sin(kΩ0t)]

I Grouping the cos- and sin-terms gives

x(t) = X0 + 2
∞∑
k=1

Xk +X−k
2 cos(kΩ0t)

+ 2j
∞∑
k=1

Xk −X−k
2 sin(kΩ0t)
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I Finally, we compute

Xk +X−k
2 = 1

2T0

∫ t0+T0

t=t0
x(t)(e−jkΩ0t + ejkΩ0t) dt

= 1
T0

∫ t0+T0

t=t0
x(t) cos(kΩ0t) dt =: ck

jXk −X−k
2 = j

2T0

∫ t0+T0

t=t0
x(t)(e−jkΩ0t − ejkΩ0t) dt

= 1
T0

∫ t0+T0

t=t0
x(t) sin(kΩ0t) dt =: dk
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I In conclusion

x(t) = c0 + 2
∞∑
k=1

ck cos(kΩ0t) + dk sin(kΩ0t)

I with
ck = Xk +X−k

2 , k = 0, 1, 2, ...

and
dk = jXk −X−k

2 , k = 1, 2, ... .

I This is the trigonometric Fourier series
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I Let x(t) be a periodic signal with fundamental period T0

I Consider a one-period restriction of this signal

x1(t) = x(t)[u(t− t0)− u(t− t0 − T0)]

I Warning: do not confuse this signal with the partial sum x1(t)



3 Fourier series and the Laplace transform | 41

I The Laplace transform of x1(t) is

X1(s) =
∫ ∞
t=−∞

x1(t)e−st dt =
∫ t0+T0

t=t0
x(t)e−st dt

I The Fourier expansion coefficient of x(t) is given by

Xk = 1
T0

∫ t0+T0

t=t0
x(t)e−jkΩ0t dt

I A comparison with the Laplace transform of x1(t) reveals that

Xk = 1
T0
X1(s)

∣∣∣∣
s=jkΩ0

, k = 0,±1,±2, ...
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I Consider an LTI system with input signal x(t), impulse response
h(t), and output signal y(t)

I We have
y(t) =

∫ ∞
τ=−∞

h(τ)x(t− τ) dτ

I Finally, let H(s) denote the transfer function of the LTI system
I Input signal x(t): a periodic signal with fundamental period T0

I What is the output?
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I Fourier expansion of x(t): x(t) =
∑∞
k=−∞Xke

jkΩ0t

I For the output signal we have

y(t) =
∫ ∞
τ=−∞

h(τ)x(t− τ) dτ

=
∫ ∞
τ=−∞

h(τ)
∞∑

k=−∞
Xke

jkΩ0(t−τ) dτ

=
∞∑

k=−∞
Xke

jkΩ0t

∫ ∞
τ=−∞

h(τ)e−jkΩ0τ dτ

=
∞∑

k=−∞
Xke

jkΩ0tH(jkΩ0) =
∞∑

k=−∞
Yke

jkΩ0t

I with Yk = XkH(jkΩ0)
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I Output signal y(t) is also periodic with fundamental period T0 and
its Fourier coefficients are given by

Yk = XkH(jkΩ0), k = 0,±1,±2, ... .
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