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▶ Let x(t) denote a causal signal: x(t) = x(t)u(t)
▶ The two-sided Laplace transform simplifies to

X(s) =
∫ ∞

t=0
x(t)e−st dt s ∈ ROCx

▶ This transform is known as the one-sided Laplace transform
▶ A separate study is warranted, since many (most/all) signals and

systems encountered in practice/Nature are causal
▶ Switch-on phenomena (initial-value problems) are conveniently

studied using the one-sided Laplace transform
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▶ To incorporate the Dirac distribution δ(t), we define the one-sided
Laplace transform of a signal x(t) as

X(s) =
∫ ∞

t=0−
x(t)e−st dt = lim

ϵ↓0

∫ ∞

t=−ϵ

x(t)e−st dt, s ∈ ROCx

▶ Many properties of the two-sided Laplace transform carry over to
the one-sided Laplace transform

▶ We only discuss three properties of the one-sided transform that do
not have a two-sided counterpart
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▶ Differentiation in the time-domain
▶ Let X(s) denote the one-sided Laplace transform of the

time-domain signal x(t)
▶ What is the one-sided Laplace transform of

y(t) = dx(t)
dt

?

▶ By definition

Y (s) =
∫ ∞

t=0−

dx(t)
dt

e−st dt, s ∈ ROCx
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▶ Integration by parts gives

Y (s) = lim
T →∞, ϵ↓0

x(t)e−st
∣∣T

−ϵ
−

∫ ∞

t=0−
x(t)

[
−se−st

]
dt = −x(0−)+sX(s)

with x(0−) = limϵ↓0 x(−ϵ) and s ∈ ROCx

▶ We have found that

dx(t)
dt

transforms into sX(s) − x(0−)

with s ∈ ROCx
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▶ Similarly, by repeated integration by parts we find that

d2x(t)
dt2 transforms into s2X(s) − sx(0−) − dx(t)

dt

∣∣∣
t=0−

with s ∈ ROCx

▶ Abel’s initial-value theorem
▶ Let X(s) be the one-sided Laplace transform of x(t), s ∈ ROCx

▶ Abel’s initial-value theorem states that

lim
s→∞

sX(s) = x(0+),

with x(0+) = limϵ↓0 x(ϵ), provided x(t) is regular at t = 0
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▶ Note that
> Left-hand side: Laplace-domain
> Right-hand side: time-domain

▶ Abel’s final-value theorem
▶ Let X(s) denote the one-sided Laplace transform of x(t), s ∈ ROCx

▶ Abel’s final-value theorem states that

lim
s→0

sX(s) = lim
t→∞

x(t)

provided limt→∞ x(t) exists
▶ Note that

> Left-hand side: Laplace-domain
> Right-hand side: time-domain
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One-Sided Laplace Transforms

Time signal One-sided Laplace transform ROC parameters

eat u(t ) 1
s °a Re(s) > Re(a) a 2C

°eat u(°t ) 0 C a 2C
t k°1eat

(k °1)! u(t ) 1
(s °a)k Re(s) > Re(a) a 2C, k 2N

° t k°1eat

(k °1)! u(°t ) 0 C a 2C, k 2N

eat cos(≠0t )u(t ) s °a
(s °a)2 +≠2

0
Re(s) > a a,≠0 2R

eat sin(≠0t )u(t ) ≠0

(s °a)2 +≠2
0

Re(s) > a a,≠0 2R

±(t ) 1 C –

±0(t ) s C –

Properties of the One-Sided Laplace Transform: xc(t ) = x(t )u(t ), t 2R
Property Time signal One-sided Laplace transform ROC Parameters

Convolution yc(t ) = hc(t )§xc(t ) Y (s) = H(s)X (s) ROChc \ROCxc –

Diff. s-domain °t x(t ) dX (s)
ds ROCxc –

Diff. t-domain dx(t )
dt sX (s)°x(0°) ROCxc –

Int. t-domain
Rt
ø=0° x(ø)dø 1

s X (s) {ROCxc |Re(s) > 0} –

Shift t-domain xc(t °ø) e°søX (s) ROCxc ø 2R, ø> 0

Shift s-domain eat x(t ) X (s °a) s °a 2 ROCxc a 2C
Scaling x(at ) 1

a X
° s

a

¢
s/a 2 ROCxc a 2R, a > 0
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▶ KCL Kirchhoff’s current law: the algebraic sum of all branch
currents flowing into any node must be zero

▶ For a node with N branches
N∑

n=1
in(t) = 0

▶ KVL Kirchhoff’s voltage law: the algebraic sum of the branch
voltages around any closed path in a network must be zero

▶ For a closed path consisting of N branches

N∑
n=1

vn(t) = 0
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▶ Let
In(s) be the one-sided Laplace transform of in(t)

n = 1, 2, ..., N

Vn(s) be the one-sided Laplace transform of Vn(t)

n = 1, 2, ..., N
▶ Since the Laplace transform is linear, we have

▶ KCL Kirchhoff’s current law in the Laplace domain:
N∑

n=1
In(s) = 0

▶ KVL Kirchhoff’s voltage law in the Laplace domain:
N∑

n=1
Vn(s) = 0
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▶ Constitutive relations
▶ Resistor

v(t) = R i(t) transforms into V (s) = RI(s)

▶ Capacitor

i(t) = C
dv(t)

dt
transforms into I(s) = sC V (s) − Cv(0−)

▶ Inductor

v(t) = L
di(t)

dt
transforms into V (s) = sL I(s) − Li(0−)
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▶ For circuits with vanishing initial conditions (the circuit is initially
at rest), we define the Laplace impedance Z(s) through the relation

V (s) = Z(s) I(s)

▶ Resistor: Z(s) = R

▶ Capacitor: Z(s) = 1
sC

▶ Inductor: Z(s) = sL
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▶ Example. Consider the circuit sketched below
▶ Input signal: is(t) = I0δ(t)
▶ Output signal: v(t)
▶ The circuit is initially at rest

is(t) Cv(t) R

+

−

1
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▶ Kirchhoff’s current law in the time-domain:

C
dv

dt
+ R−1v(t) = I0δ(t), t > 0−

v(0−) = 0
▶ Kirchhoff’s current law in the s-domain:

sCV (s) + R−1V (s) = I0

▶ Divide by C to obtain(
s + τ−1)

V (s) = C−1I0, τ = RC

▶ We find
V (s) = C−1I0

1
s + τ−1 , τ = RC
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▶ Using the table for one-sided Laplace transforms, the voltage is
found as

v(t) = C−1I0e−t/τ u(t), τ = RC

▶ The current through the capacitor follows as

ic(t) = C
dv(t)

dt
= I0

[
δ(t) − 1

τ
e−t/τ u(t)

]
, τ = RC

▶ Observe that we can also write

Ic(s) = Ycap(s)
Ycap(s) + Yres(s)I0

▶ Ycap(s) = sC and Yres(s) = R−1 are the Laplace domain
admittances of the capacitor and resistor, respectively
(Y (s) = Z−1(s))
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▶ Substitution gives

Ic(s) = sC

sC + R−1 I0 =
(

1 − 1
τ

1
s + 1

τ

)
I0, τ = RC

▶ Using the table for the one-sided Laplace transform, we again
arrive at

ic(t) = I0

[
δ(t) − 1

τ
e−t/τ u(t)

]
, τ = RC
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▶ We consider the differential equation

a2
d2y

dt2 + a1
dy

dt
+ a0y = x(t),

for t > 0− with initial conditions

y(0−) = α and dy

dt

∣∣∣
t=0−

= β

▶ The problem consists of finding y(t) for a given signal x(t) and
initial values α and β

▶ The signal x(t) can be seen as the input signal of a SISO system
▶ The signal y(t) can be seen as the output signal of the SISO system
▶ The coefficients ai are typically real-valued

Determined by R, L, and/or C in an electric circuit, for example
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▶ Applying a one-sided Laplace transform to the differential equation
and taking the initial conditions into account, we obtain

(a2s2 + a1s + a0)Y (s) = X(s) + a1α + a2(β + αs)

▶ and the Laplace transform of the solution is found as

Y (s) = Yzs(s) + Yzi(s)

with
Yzs(s) = X(s)

a2s2 + a1s + a0

the Laplace transform of the zero-state response yzs(t), and

Yzi(s) = a1α + a2(β + αs)
a2s2 + a1s + a0

the Laplace transform of the zero-input response yzi(t)
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▶ Note that for x(t) = δ(t) and vanishing initial conditions (α = 0
and β = 0), the time-domain output signal is the impulse response
h(t) with the transfer function

H(s) = 1
a2s2 + a1s + a0

as its Laplace transform
▶ Determining y(t) amounts to finding the time-domain signal that

corresponds to Y (s) (inverse Laplace transform)
▶ We determine y(t) from Y (s) using tables (via inspection)
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▶ The Laplace transform signals that we consider are of the form

X(s) = pM (s)
qN (s)

▶ pM (s) and qN (s) are polynomials in s of degree M and N ,
respectively

▶ Our Laplace transform signals are rational functions in s

* For M > N , X(s) is an improper rational function
* For M ≤ N , X(s) is a proper rational function
* For M < N , X(s) a strictly proper rational function
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▶ It can be shown that if X(s) is proper or improper then it can
always be written as

X(s) = RM−N (s) + S(s)
T (s)

▶ RM−N (s) is a polynomial in s of degree M − N

▶ S and T are polynomials such that the rational function S/T is
strictly proper
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▶ Example 1
X(s) = s

s + 1
is a proper rational function, which can be written as

X(s) = 1 − 1
s + 1

▶ In this example, R0(s) = 1 and −1/(s + 1) is strictly proper
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▶ Example 2

X(s) = s3

s + 4
is an improper rational function, which can be written as

X(s) = s2 − 4s + 16 − 64
s + 4

▶ In this example, R2(s) = s2 − 4s + 16 and −64/(s + 4) is strictly
proper
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▶ Finding x(t) from X(s) amounts to using partial fraction
decompositions of X(s) such that X(s) consists of polynomials
and/or strictly proper rational functions that have tabulated
time-domain counterparts

▶ Example Suppose

X(s) = 1
(s + 1)(s + 4)

▶ A partial fraction decomposition gives

X(s) = 1
3

(
1

s + 1 − 1
s + 4

)
▶ Using the Laplace transform table, we find

x(t) = 1
3

(
e−t − e−4t

)
u(t)
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