

Signals and Systems The Laplace Transform 2

Rob Remis Delft University of Technology September 16, 2024

1 Outline

1 Overview

2 The one-sided Laplace transform

3 Properties of the one-sided Laplace transform

- **4** Circuit Theory Revisited
- **5** Solving differential equations using the Laplace transform

6 The inverse Laplace transform via inspection

1 Overview

Contents

- ▶ The one-sided Laplace transform
- circuit theory revisited
- ▶ Solving differential equations using the Laplace transform
- ▶ The inverse Laplace transform via inspection

Book

Sections 3.5 - 3.8

Exercises:

3.1, 3.2, 3.4, 3.5, 3.7, 3.9 - 3.13, 3.18, 3.20, 3.22, 3.25, 3.29, 3.30

2 Outline

Overview

2 The one-sided Laplace transform

3 Properties of the one-sided Laplace transform

- **4** Circuit Theory Revisited
- **5** Solving differential equations using the Laplace transform

6 The inverse Laplace transform via inspection

2 The one-sided Laplace transform

- Let x(t) denote a causal signal: x(t) = x(t)u(t)
- ▶ The two-sided Laplace transform simplifies to

$$X(s) = \int_{t=0}^{\infty} x(t)e^{-st} \,\mathrm{d}t \qquad s \in \mathrm{ROC}_x$$

- ▶ This transform is known as the *one-sided Laplace transform*
- A separate study is warranted, since many (most/all) signals and systems encountered in practice/Nature are causal
- Switch-on phenomena (initial-value problems) are conveniently studied using the one-sided Laplace transform

2 The one-sided Laplace transform

• To incorporate the Dirac distribution $\delta(t)$, we define the one-sided Laplace transform of a signal x(t) as

$$X(s) = \int_{t=0^{-}}^{\infty} x(t)e^{-st} \, \mathrm{d}t = \lim_{\epsilon \downarrow 0} \int_{t=-\epsilon}^{\infty} x(t)e^{-st} \, \mathrm{d}t, \qquad s \in \mathrm{ROC}_x$$

- Many properties of the two-sided Laplace transform carry over to the one-sided Laplace transform
- We only discuss three properties of the one-sided transform that do not have a two-sided counterpart

3 Outline

Overview

2 The one-sided Laplace transform

3 Properties of the one-sided Laplace transform

- **4** Circuit Theory Revisited
- **5** Solving differential equations using the Laplace transform

6 The inverse Laplace transform via inspection

Differentiation in the time-domain

- Let X(s) denote the one-sided Laplace transform of the time-domain signal x(t)
- ▶ What is the one-sided Laplace transform of

$$y(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t}?$$

► By definition

$$Y(s) = \int_{t=0^{-}}^{\infty} \frac{\mathrm{d}x(t)}{\mathrm{d}t} e^{-st} \,\mathrm{d}t, \qquad s \in \mathrm{ROC}_{x}$$

Integration by parts gives

$$Y(s) = \lim_{T \to \infty, \, \epsilon \downarrow 0} x(t) e^{-st} \Big|_{-\epsilon}^{T} - \int_{t=0^{-}}^{\infty} x(t) \Big[-se^{-st} \Big] \, \mathrm{d}t = -x(0^{-}) + sX(s)$$

with $x(0^-) = \lim_{\epsilon \downarrow 0} x(-\epsilon)$ and $s \in \operatorname{ROC}_x$

▶ We have found that

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t}$$
 transforms into $sX(s) - x(0^-)$

with $s \in \text{ROC}_x$

▶ Similarly, by repeated integration by parts we find that

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} \text{ transforms into } s^2 X(s) - s x(0^-) - \frac{\mathrm{d}x(t)}{\mathrm{d}t}\Big|_{t=0^-}$$

with $s \in \text{ROC}_x$

Abel's initial-value theorem

Let X(s) be the one-sided Laplace transform of $x(t), s \in \text{ROC}_x$

Abel's initial-value theorem states that

$$\lim_{s \to \infty} sX(s) = x(0^+),$$

with $x(0^+) = \lim_{\epsilon \downarrow 0} x(\epsilon)$, provided x(t) is regular at t = 0

▶ Note that

- > Left-hand side: Laplace-domain
- > Right-hand side: time-domain

Abel's final-value theorem

- ▶ Let X(s) denote the one-sided Laplace transform of x(t), $s \in \text{ROC}_x$
- ▶ Abel's final-value theorem states that

$$\lim_{s \to 0} sX(s) = \lim_{t \to \infty} x(t)$$

provided $\lim_{t\to\infty} x(t)$ exists

▶ Note that

- > Left-hand side: Laplace-domain
- > Right-hand side: time-domain

Time signal	One-sided Laplace transform	ROC	parameters	
$e^{at}u(t)$	$\frac{1}{s-a}$	$\operatorname{Re}(s) > \operatorname{Re}(a)$	$a \in \mathbb{C}$	
$-e^{at}u(-t)$	0	\mathbb{C}	$a \in \mathbb{C}$	
$\frac{t^{k-1}e^{at}}{(k-1)!}u(t)$	$\frac{1}{(s-a)^k}$	$\operatorname{Re}(s) > \operatorname{Re}(a)$	$a \in \mathbb{C}, k \in \mathbb{N}$	
$-\frac{t^{k-1}e^{at}}{(k-1)!}u(-t)$	0	C	$a \in \mathbb{C}, k \in \mathbb{N}$	
$e^{at}\cos(\Omega_0 t)u(t)$	$\frac{s-a}{(s-a)^2 + \Omega_0^2}$	$\operatorname{Re}(s) > a$	$a, \Omega_0 \in \mathbb{R}$	
$e^{at}\sin(\Omega_0 t)u(t)$	$\frac{\Omega_0}{\left(s-a\right)^2+\Omega_0^2}$	$\operatorname{Re}(s) > a$	$a, \Omega_0 \in \mathbb{R}$	
$\delta(t)$	1	\mathbb{C}	-	
$\delta'(t)$	\$	C	-	

One-Sided Laplace Transforms

Property	Time signal	One-sided Laplace transform	ROC	Parameters
Convolution	$y_{\rm c}(t) = h_{\rm c}(t) \ast x_{\rm c}(t)$	Y(s) = H(s)X(s)	$\operatorname{ROC}_{h_c} \cap \operatorname{ROC}_{x_c}$	-
Diff. s-domain	-tx(t)	$\frac{\mathrm{d}X(s)}{\mathrm{d}s}$	ROC_{x_c}	-
Diff. <i>t</i> -domain	$\frac{\mathrm{d}x(t)}{\mathrm{d}t}$	$sX(s) - x(0^{-})$	ROC_{x_c}	-
Int. <i>t</i> -domain	$\int_{\tau=0^-}^t x(\tau) \mathrm{d}\tau$	$\frac{1}{s}X(s)$	$\{\operatorname{ROC}_{x_c} \operatorname{Re}(s)>0\}$	-
Shift <i>t</i> -domain	$x_{\rm c}(t-\tau)$	$e^{-s\tau}X(s)$	ROC_{x_c}	$\tau\in\mathbb{R},\tau>0$
Shift s-domain	$e^{at}x(t)$	X(s-a)	$s - a \in \operatorname{ROC}_{x_c}$	$a \in \mathbb{C}$
Scaling	x(at)	$\frac{1}{a}X\left(\frac{s}{a}\right)$	$s/a \in \mathrm{ROC}_{x_{\mathrm{c}}}$	$a \in \mathbb{R}, a > 0$

Properties of the One-Sided Laplace Transform: $x_c(t) = x(t)u(t), t \in \mathbb{R}$

4 Outline

Overview

- **2** The one-sided Laplace transform
- **3** Properties of the one-sided Laplace transform
- **4** Circuit Theory Revisited
- **5** Solving differential equations using the Laplace transform
- **6** The inverse Laplace transform via inspection

- **KCL** Kirchhoff's current law: the algebraic sum of all branch currents flowing into any node must be zero
- \blacktriangleright For a node with N branches

$$\sum_{n=1}^{N} i_n(t) = 0$$

- ▶ **KVL** Kirchhoff's voltage law: the algebraic sum of the branch voltages around any closed path in a network must be zero
- \blacktriangleright For a closed path consisting of N branches

$$\sum_{n=1}^{N} v_n(t) = 0$$

▶ Let
 I_n(s) be the one-sided Laplace transform of i_n(t)
 n = 1, 2, ..., N
 V_n(s) be the one-sided Laplace transform of V_n(t)

n = 1, 2, ..., N
▶ Since the Laplace transform is linear, we have

KCL Kirchhoff's current law in the Laplace domain:

$$\sum_{n=1}^{N} I_n(s) = 0$$

KVL Kirchhoff's voltage law in the Laplace domain:

$$\sum_{n=1}^{N} V_n(s) = 0$$

- 4 Circuit Theory Revisited
 - Constitutive relations

► Resistor

v(t) = Ri(t) transforms into V(s) = RI(s)

 \blacktriangleright Capacitor

$$i(t) = C \frac{\mathrm{d}v(t)}{\mathrm{d}t}$$
 transforms into $I(s) = sCV(s) - Cv(0^{-})$

► Inductor

$$v(t) = L \frac{\mathrm{d}i(t)}{\mathrm{d}t}$$
 transforms into $V(s) = sLI(s) - Li(0^{-})$

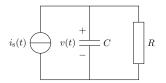
For circuits with vanishing initial conditions (the circuit is initially at rest), we define the Laplace impedance Z(s) through the relation

$$V(s) = Z(s) I(s)$$

- $\blacktriangleright \text{ Resistor: } Z(s) = R$
- Capacitor: $Z(s) = \frac{1}{sC}$
- Inductor: Z(s) = sL

Example. Consider the circuit sketched below

- ► Input signal: $i_s(t) = I_0 \delta(t)$
- \blacktriangleright Output signal: v(t)
- ▶ The circuit is initially at rest



▶ Kirchhoff's current law in the time-domain:

$$C\frac{\mathrm{d}v}{\mathrm{d}t} + R^{-1}v(t) = I_0\delta(t), \qquad t > 0^-$$

 $v(0^{-}) = 0$

▶ Kirchhoff's current law in the *s*-domain:

$$sCV(s) + R^{-1}V(s) = I_0$$

 \blacktriangleright Divide by C to obtain

$$(s + \tau^{-1}) V(s) = C^{-1} I_0, \qquad \tau = RC$$

► We find

$$V(s) = C^{-1}I_0 \frac{1}{s + \tau^{-1}}, \qquad \tau = RC$$

 Using the table for one-sided Laplace transforms, the voltage is found as

$$v(t) = C^{-1}I_0 e^{-t/\tau} u(t), \qquad \tau = RC$$

▶ The current through the capacitor follows as

$$i_{\rm c}(t) = C \frac{\mathrm{d}v(t)}{\mathrm{d}t} = I_0 \left[\delta(t) - \frac{1}{\tau} e^{-t/\tau} u(t) \right], \qquad \tau = RC$$

Observe that we can also write

$$I_c(s) = \frac{Y_{\rm cap}(s)}{Y_{\rm cap}(s) + Y_{\rm res}(s)} I_0$$

 Y_{cap}(s) = sC and Y_{res}(s) = R⁻¹ are the Laplace domain admittances of the capacitor and resistor, respectively (Y(s) = Z⁻¹(s))

Substitution gives

$$I_c(s) = \frac{sC}{sC + R^{-1}} I_0 = \left(1 - \frac{1}{\tau} \frac{1}{s + \frac{1}{\tau}}\right) I_0, \qquad \tau = RC$$

 Using the table for the one-sided Laplace transform, we again arrive at

$$i_{\rm c}(t) = I_0 \left[\delta(t) - \frac{1}{\tau} e^{-t/\tau} u(t) \right], \qquad \tau = RC$$

5 Outline

Overview

2 The one-sided Laplace transform

8 Properties of the one-sided Laplace transform

4 Circuit Theory Revisited

6 Solving differential equations using the Laplace transform

6 The inverse Laplace transform via inspection

5 Solving differential equations

▶ We consider the differential equation

$$a_2 \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + a_1 \frac{\mathrm{d}y}{\mathrm{d}t} + a_0 y = x(t),$$

for $t > 0^-$ with initial conditions

$$y(0^{-}) = \alpha$$
 and $\frac{\mathrm{d}y}{\mathrm{d}t}\Big|_{t=0^{-}} = \beta$

- ▶ The problem consists of finding y(t) for a given signal x(t) and initial values α and β
- ▶ The signal x(t) can be seen as the input signal of a SISO system
- ▶ The signal y(t) can be seen as the output signal of the SISO system
- The coefficients a_i are typically real-valued Determined by R, L, and/or C in an electric circuit, for example

5 Solving differential equations

 Applying a one-sided Laplace transform to the differential equation and taking the initial conditions into account, we obtain

$$(a_2s^2 + a_1s + a_0)Y(s) = X(s) + a_1\alpha + a_2(\beta + \alpha s)$$

▶ and the Laplace transform of the solution is found as

$$Y(s) = Y_{\rm zs}(s) + Y_{\rm zi}(s)$$

with

$$Y_{\rm zs}(s) = \frac{X(s)}{a_2 s^2 + a_1 s + a_0}$$

the Laplace transform of the zero-state response $y_{zs}(t)$, and

$$Y_{\rm zi}(s) = \frac{a_1 \alpha + a_2 (\beta + \alpha s)}{a_2 s^2 + a_1 s + a_0}$$

the Laplace transform of the zero-input response $y_{zi}(t)$

5 Solving differential equations

Note that for $x(t) = \delta(t)$ and vanishing initial conditions ($\alpha = 0$ and $\beta = 0$), the time-domain output signal is the impulse response h(t) with the transfer function

$$H(s) = \frac{1}{a_2 s^2 + a_1 s + a_0}$$

as its Laplace transform

- Determining y(t) amounts to finding the time-domain signal that corresponds to Y(s) (inverse Laplace transform)
- We determine y(t) from Y(s) using tables (via inspection)

6 Outline

Overview

2 The one-sided Laplace transform

3 Properties of the one-sided Laplace transform

- **4** Circuit Theory Revisited
- **5** Solving differential equations using the Laplace transform

6 The inverse Laplace transform via inspection

- 6 The inverse Laplace transform via inspection
 - ▶ The Laplace transform signals that we consider are of the form

$$X(s) = \frac{p_M(s)}{q_N(s)}$$

- ▶ $p_M(s)$ and $q_N(s)$ are polynomials in s of degree M and N, respectively
- \blacktriangleright Our Laplace transform signals are rational functions in s
- * For M > N, X(s) is an *improper* rational function
- * For $M \leq N$, X(s) is a proper rational function
- * For M < N, X(s) a strictly proper rational function

• It can be shown that if X(s) is proper or improper then it can always be written as

$$X(s) = R_{M-N}(s) + \frac{S(s)}{T(s)}$$

- ▶ $R_{M-N}(s)$ is a polynomial in s of degree M N
- S and T are polynomials such that the rational function S/T is strictly proper

Example 1

$$X(s) = \frac{s}{s+1}$$

is a proper rational function, which can be written as

$$X(s) = 1 - \frac{1}{s+1}$$

▶ In this example, $R_0(s) = 1$ and -1/(s+1) is strictly proper

Example 2

$$X(s) = \frac{s^3}{s+4}$$

is an improper rational function, which can be written as

$$X(s) = s^2 - 4s + 16 - \frac{64}{s+4}$$

▶ In this example, $R_2(s) = s^2 - 4s + 16$ and -64/(s+4) is strictly proper

- Finding x(t) from X(s) amounts to using partial fraction decompositions of X(s) such that X(s) consists of polynomials and/or strictly proper rational functions that have tabulated time-domain counterparts
- Example Suppose

$$X(s) = \frac{1}{(s+1)(s+4)}$$

▶ A partial fraction decomposition gives

$$X(s) = \frac{1}{3} \left(\frac{1}{s+1} - \frac{1}{s+4} \right)$$

▶ Using the Laplace transform table, we find

$$x(t) = \frac{1}{3} \left(e^{-t} - e^{-4t} \right) u(t)$$

