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2 The one-sided Laplace transform

> Let z(t) denote a causal signal: z(t) = x(t)u(t)
» The two-sided Laplace transform simplifies to

oo

X(s) = / z(t)e st dt s € ROC,
t=0

» This transform is known as the one-sided Laplace transform

> A separate study is warranted, since many (most/all) signals and
systems encountered in practice/Nature are causal

» Switch-on phenomena (initial-value problems) are conveniently
studied using the one-sided Laplace transform
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2 The one-sided Laplace transform

» To incorporate the Dirac distribution 6(t), we define the one-sided
Laplace transform of a signal z(t) as

(o) (o)
X(s) = / z(t)e” " dt = lim z(t)e st dt, s € ROC,
t=0~ 0 Ji=—c

» Many properties of the two-sided Laplace transform carry over to
the one-sided Laplace transform

» We only discuss three properties of the one-sided transform that do
not have a two-sided counterpart
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3 Properties of the one-sided Laplace transform 7

> Differentiation in the time-domain
> Let X(s) denote the one-sided Laplace transform of the
time-domain signal x(t)

» What is the one-sided Laplace transform of

_ dz(t)

?
dt

y(t)

» By definition

Y(s) = d2l) gy, s eroC,
at
t=0-
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3 Properties of the one-sided Laplace transform 8

» Integration by parts gives

Y(s)= lim av(t)e_StEE —/too x(t)[—se‘“] dt = —2(07)+sX(s)

T—o0,el0 —0—

with (07) = lim. o (—¢€) and s € ROC,
» We have found that

dxz(t)
dt

transforms into sX (s) — z(07)

with s € ROC,
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3 Properties of the one-sided Laplace transform
» Similarly, by repeated integration by parts we find that

d?z(t)
dt?

dz(t)
dt li=0-

transforms into s X (s) — sz(07) —
with s € ROC,,

» Abel’s initial-value theorem
> Let X(s) be the one-sided Laplace transform of z(t), s € ROC,

» Abel’s initial-value theorem states that

lim sX(s) = 2(0%),

L de el

with 2(0") = lim, o z(e), provided z(t) is regular at t =0
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3 Properties of the one-sided Laplace transform

> Note that

> Left-hand side: Laplace-domain
> Right-hand side: time-domain

> Abel’s final-value theorem
> Let X(s) denote the one-sided Laplace transform of z(t), s € ROC,
» Abel’s final-value theorem states that
e )= e
provided lim;_, o, x(t) exists

» Note that
> Left-hand side: Laplace-domain

> Right-hand side: time-domain
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3 Properties of the one-sided Laplace transform

One-Sided Laplace Transforms

Time signal One-sided Laplace transform ROC parameters
e u(r) =3 Re(s) >Re(a)  aeC
—e"u(-1) 0 C aeC
e 1 Re(s) > R C keN
=T GoaF e(s)>Re(@) aeC ke
tk—lezzt C C Kk
—mu(— t) 0 ael,kKe N
at cos(Qo B u(t —Ss-a Re(s) > ,Qp R
e“tcos(Qotu(r) (s—a)2+Q(2J e(s)>a a, Qg
. Q
asin(Qo ) u(t — Re(s) > , Qo €R
esin(Qot)u(r) (s—a)2+Qg e(s)>a a, Qg
o(1) 1 _
é'(1) s —

]
TUDelft



3 Properties of the one-sided Laplace transform

Properties of the One-Sided Laplace Transform: x(f) = x(£)u(t), te R

Property Time signal One-sided Laplace transform ROC Parameters
Convolution  yc(#) = he(t) * xc(2) Y (s)= H(s)X(s) ROCj, NROCy, -
Diff. s-domain —tx(1) % ROC,, -
Diff. t-domain ax(n $X(s)—x(07) ROCy, -
Int. t-domain - x(@dr 1X(s) {ROCy, [Re(s) > 0} -

Shift £-domain Xc(t—1) e ST X(s) ROCy, TER, 7>0

Shift s-domain ex(1) X(s—a) s—a€ROCy, aeC
Scaling x(at) 1X(2) s/a€ROCy, acR a>0
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4 Circuit Theory Revisited
» KCL Kirchhoff’s current law: the algebraic sum of all branch

currents flowing into any node must be zero
» For a node with N branches

N
D in(t) =0

» KVL Kirchhoff’s voltage law: the algebraic sum of the branch
voltages around any closed path in a network must be zero

» For a closed path consisting of N branches

N
> un(t) =0
n=1
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4 Circuit Theory Revisited

> Let
I,,(s) be the one-sided Laplace transform of 4,,(t)
n=12,...N
V,.(s) be the one-sided Laplace transform of V,,(t)
n=12,..,.N

» Since the Laplace transform is linear, we have

» KCL Kirchhoff’s current law in the Laplace domain:

N
> Iu(s)=0
n=1

» KVL Kirchhoff’s voltage law in the Laplace domain:

N
> Val(s) =0 5
n=1 TUDelft



4 Circuit Theory Revisited

» Comnstitutive relations
> Resistor

v(t) = Ri(t) transforms into V(s) = RI(s)

» Capacitor

i(t) = Cdz(tt) transforms into  I(s) = sCV(s) — Cv(07)
> Inductor
(t) = Ld;(tt) transforms into V' (s) = sLI(s) — Li(07)
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4 Circuit Theory Revisited

» For circuits with vanishing initial conditions (the circuit is initially
at rest), we define the Laplace impedance Z(s) through the relation

> Resistor: Z(s) = R
» Capacitor: Z(s) = -
» Inductor: Z(s) = sL
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4 Circuit Theory Revisited 18

» Example. Consider the circuit sketched below
> Input signal: is(t) = Ipd(t)
> Output signal: v(t)

» The circuit is initially at rest

i(t) @ ot) —— ¢ R
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4 Circuit Theory Revisited 19

» Kirchhofl’s current law in the time-domain:

Ci—: + R7(t) = Ips(t), t>0"

v(07)=0
» Kirchhoft’s current law in the s-domain:
sCV(s)+ R'V(s) =1Iy
» Divide by C' to obtain
(s+7 HV(s)=CI, T=RC
> We find

1
s+71

V(s)=C"1I, , T=RC
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4 Circuit Theory Revisited

» Using the table for one-sided Laplace transforms, the voltage is
found as

v(t) = C  pe VT u(t), 7=RC
» The current through the capacitor follows as

du(t)
dt

ity = O _ sy = ey - = Re
T

» Observe that we can also write

Ycap(s)

IC(S) - }/cap(s) + Y;es(s)

Iy

> Yeap(s) = sC and Yies(s) = R™1 are the Laplace domain
admittances of the capacitor and resistor, respectively
(Y(s)=Z"!(s))
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4 Circuit Theory Revisited 21

» Substitution gives

sC 1 1
lels) = e geito = (1‘m+1>[°’ = he

» Using the table for the one-sided Laplace transform, we again
arrive at

io(t) = I [5@) - 1e_t/7u(t)] . r=RC

T
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5 Solving differential equations

>

v

We consider the differential equation

2

dy
@' gy ooy = 2(0),

for t > 0~ with initial conditions

_ dy
= d o =
y(07)=a an el B

The problem consists of finding y(t) for a given signal z(¢) and
initial values o and f3

The signal z(t) can be seen as the input signal of a SISO system
The signal y(t) can be seen as the output signal of the SISO system

The coefficients a; are typically real-valued
Determined by R, L, and/or C in an electric circuit, for example
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5 Solving differential equations

» Applying a one-sided Laplace transform to the differential equation
and taking the initial conditions into account, we obtain

(ags® + ars + ag)Y(s) = X(s) + ara + as(f + as)
» and the Laplace transform of the solution is found as
Y(s) = Yus(s) + Yai(s)
with

X(s)

Y~ = -
2s(5) a28% + a1s + ag

the Laplace transform of the zero-state response y,s(¢), and

a1+ az(B8 + as)
as82 + ais + ag

Yai(s) =

the Laplace transform of the zero-input response y,; ()
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5 Solving differential equations

» Note that for z(¢t) = §(¢) and vanishing initial conditions (o =0
and § = 0), the time-domain output signal is the impulse response
h(t) with the transfer function

1
H(s) = —5———
a28° + a18 + ag
as its Laplace transform

» Determining y(¢) amounts to finding the time-domain signal that
corresponds to Y'(s) (inverse Laplace transform)

» We determine y(t) from Y'(s) using tables (via inspection)
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@® The inverse Laplace transform via inspection
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6 The inverse Laplace transform via inspection 27

» The Laplace transform signals that we consider are of the form

> pu(s) and gy (s) are polynomials in s of degree M and N,
respectively

» Qur Laplace transform signals are rational functions in s

For M > N, X(s) is an improper rational function
For M < N, X(s) is a proper rational function
For M < N, X(s) a strictly proper rational function
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6 The inverse Laplace transform via inspection 28

» Tt can be shown that if X (s) is proper or improper then it can
always be written as

S(s)

» Rp—n(s) is a polynomial in s of degree M — N

» S and T are polynomials such that the rational function S/T is
strictly proper

]
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6 The inverse Laplace transform via inspection 29

> Example 1
S

s+1
is a proper rational function, which can be written as

X(s) =

1
s+1

X(s)=1-

» In this example, Ry(s) =1 and —1/(s + 1) is strictly proper
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6 The inverse Laplace transform via inspection 30

> Example 2

s3

X(s) = s+4

is an improper rational function, which can be written as

64
X(s) =52 —ds+16 — ——
(s)=s s+ P

> In this example, Ra(s) = s> — 4s + 16 and —64/(s + 4) is strictly
proper
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6 The inverse Laplace transform via inspection

» Finding z(¢) from X (s) amounts to using partial fraction
decompositions of X (s) such that X(s) consists of polynomials
and/or strictly proper rational functions that have tabulated
time-domain counterparts

» Example Suppose

1

Y= e+

» A partial fraction decomposition gives

1 1 1
X(s) =< -
(5) 3(s+1 s+4>

» Using the Laplace transform table, we find

L, v
z(t)==(e " —e u(t 2
" 3( Jutt) TUDelft
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