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We consider a system with a single input and a single output

Input signal x(t), output signal y(t)

Such systems are called SISO systems

SISO stands for Single Input Single Output

If a system has Multiple Inputs and Multiple Outputs it is called a
MIMO system

We restrict ourselves to SISO systems
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The action of the system on the input signal x(t) is described by the
system operator S. We write

y(t) = S
{
x(t)

}
In this course we are particularly interested in systems that are Linear
and Time-Invariant

Such systems are called LTI systems
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Linearity Suppose we have two input signals x1(t) and x2(t). Denote
the corresponding output signals by y1(t) and y2(t):

y1(t) = S
{
x1(t)

}
and y2(t) = S

{
x2(t)

}
The system is called linear if

y(t) = S
{
αx1(t) + βx2(t)

}
= αS

{
x1(t)

}
+ βS

{
x2(t)

}
= αy1(t) + βy2(t)

for any two constants α and β
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Any linear combination of input signals produces the same linear
combination of their corresponding output signals

Taking β = 0, it follows from the above definition that

y(t) = S
{
αx1(t)

}
= αS

{
x1(t)

}
= αy1(t)

In other words, for a linear system, if you scale the input signal by a
factor α, the output signal will scale with the same factor
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Example Consider a SISO system with input signal x(t) and an
output signal given by

y(t) = 1
T

∫ t

τ=t−T
x(τ) dτ +B,

where B is a constant. Such a system is called a biased averager (can
you see why?)

Scaling the input signal by a factor α, we obtain the output signal

α

T

∫ t

τ=t−T
x(τ) dτ +B,

which is not equal to αy(t) unless B = 0. The averager is nonlinear for
B 6= 0 and linear for B = 0
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Time-Invariance Let y(t) be the output signal that corresponds to an
input signal x(t):

y(t) = S
{
x(t)

}
The system is called time-invariant if

y(t− τ) = S
{
x(t− τ)

}
for any time shift τ ∈ R

In words: shifting your input signal produces an equally time-shifted
output signal
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Let the Dirac delta function be the input signal of an LTI system

The corresponding output signal is written as h(t) and is called the
impulse response:

h(t) = S
{
δ(t)

}
We claim that if you know the impulse response of an LTI system then
you know the response to any other input signal!
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To show this, let y(t) be the output signal that corresponds to an input
signal x(t):

y(t) = S
{
x(t)

}
Because of the sifting property of the delta function, we have

x(t) =
∫ ∞
τ=−∞

x(τ)δ(t− τ) dτ

The right-hand side of the above expression can be seen as a continuous
weighted summation of shifted Dirac distributions
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Substitution gives

y(t) = S
{∫ ∞

τ=−∞
x(τ)δ(t− τ) dτ

}
Now note that S is a linear system operator and acts on functions that
depend on time t

This allows us to write

y(t) =
∫ ∞
τ=−∞

x(τ)S
{
δ(t− τ)

}
dτ

Since the system is time-invariant as well, we have

h(t− τ) = S
{
δ(t− τ)

}
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We arrive at
y(t) =

∫ ∞
τ=−∞

x(τ)h(t− τ) dτ

Knowing the impulse response h(t), we can determine the response y(t)
to any input signal x(t) by evaluating the above integral

This integral is called the convolution integral or convolution product of
the signals x and h

Short-hand notation:

y = x ∗ h or y(t) = x(t) ∗ h(t)
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For two real numbers a and b, we have ab = ba

The product of two real numbers commutes

Is this also true for the convolution product? In other words, do we
have x ∗ h = h ∗ x?

The answer is yes. Let’s check it.

y(t) = x ∗ h =
∫ ∞
τ=−∞

x(τ)h(t− τ) dτ p=t−τ=
∫ ∞
p=−∞

x(t− p)h(p) dp

=
∫ ∞
p=−∞

h(p)x(t− p) dp = h ∗ x

Conclusion: the convolution product of two signals commutes
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For the product of real numbers, there exists an identity element called
“one” and written as 1 for which a = a · 1 = 1 · a
What is the identity element for the convolution product?
We already know the answer to this question. It is the Dirac delta
function!

x = x ∗ δ = δ ∗ x

The convolution product is also associative, that is, for three signals u,
v, and w, we have (check this yourself)

(u ∗ v) ∗ w = u ∗ (v ∗ w)
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This property can be exploited to determine the total impulse function
of two LTI systems interconnected in cascade

System 1: input signal x(t), impulse function h1(t), output signal y1(t)

System 2: input signal y1(t), impulse function h2(t), output signal y(t)

We assume that System 2 does not “load” System 1
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Response of the total system:

y = y1 ∗ h2 = (x ∗ h1) ∗ h2 = x ∗ (h1 ∗ h2) = x ∗ h

where we have introduced the impulse function of the total system as

h = h1 ∗ h2 = h2 ∗ h1

Note that since the convolution product of two signals commute, we
can interchange the order of the subsystems without affecting the
output signal y(t) (provided both systems do not “load” each other)
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Finally, if the support of a signal x is (`x, ux) and the support of a
signal h is (`h, uh) then

the support of y(t) = x(t) ∗ h(t) is (`x + `h, ux + uh)

Verify this statement!
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Examples

Exercise 1. Let p(t) denote the rectangular pulse signal. Determine
x(t) = p(t) ∗ p(t).

Exercise 2. (13-12-2023 ) Determine the signal y(t) = h(t) ∗ x(t), where
h(t) = u(t− 1), x(t) = u(t− 2), and u(t) is the Heaviside unit step function.

Exercise 3. (19-07-2021 ) Given the signal x(t) = te−αtu(t) with α > 0.
Determine the convolution y(t) = x(t) ∗ x(t) directly using the convolution
integral.
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Up till now we have been looking at fairly general systems whose action
on the input signal is described by some operator S
Let us now be more specific and consider systems described by the
linear ordinary differential equation(
aN

dN

dtN + aN−1
dN−1

dtN−1 + ...+ a1
d
dt + a0

)
y(t) =(

bM
dM

dtM + bM−1
dM−1

dtM−1 + ...+ b1
d
dt + b0

)
x(t)

which holds for t > 0 and N and M are nonnegative integers
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In the above differential equation, x(t) is the prescribed (known) input
signal and y(t) is the desired output signal

To obtain the output signal y(t), we also need the N initial conditions

y(0) and dky(t)
dtk

∣∣∣
t=0

for k = 1, 2, ..., N − 1

RLC circuits, mechanical systems, etc. can all be described by a
differential equation of the above form
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Further on we will show how to solve the differential equation using the
Laplace transform

Here, we state that the solution (output signal) can be written as

y(t) = yzs(t) + yzi(t)

I yzs(t) is called the zero-state response. This is the solution
exclusively due to the input signal with initial conditions set to
zero

> Special case: The impulse response h(t) of the system is a
zero-state response of the system in case the input signal is the
Dirac impulse function: x(t) = δ(t)

I yzi(t) is called the zero-input response. This is the solution
exclusively due to the initial conditions with the input set to zero
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I For vanishing initial conditions the system is linear and
time-invariant.

I For nonvanishing initial conditions, the system is no longer an LTI
system

Example. Consider a circuit consisting of a resistor R in series with
an inductor L and a voltage source v(t) = Bu(t). The initial current in
the inductor is I0. The input signal of the system is v(t), the current
i(t) is the output signal.
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The output signal is given by

i(t) = izs(t) + izi(t) for t > 0

with

izs(t) = B

R
(1− e−t/τ ), izi(t) = I0e

−t/τ , and τ = L/R

I If we double the amplitude of the input signal the output signal
becomes i(t) = 2izs(t) + izi(t) with izs(t) and izi(t) as above

I Clearly, the output is not doubled, since izi(t) does not vanish: the
system is not linear

I However, for I0 = 0 (vanishing initial condition) we have izi(t) = 0
and the system is linear
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Consider a continuous-time system with input signal x(t) and output
signal y(t). The system is causal
I if the output signal y(t) = 0 for a vanishing input signal and

vanishing initial conditions
I if the output y(t) does not depend on future inputs

An LTI system is causal if

h(t) = 0 for t < 0

Indeed, for an LTI system we have the convolution integral

y(t) =
∫ ∞
τ=−∞

x(τ)h(t− τ) dτ
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Writing the integral as

y(t) =
∫ t

τ=−∞
x(τ)h(t− τ) dτ +

∫ ∞
τ=t

x(τ)h(t− τ) dτ

we observe that in the second term on the right-hand side integration
takes place over future inputs

For a causal system, these inputs cannot contribute to the output
signal at time instant t

Consequently, for a causal system we must have h(t− τ) = 0 for
t < τ <∞ or h(t) = 0 for t < 0
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In case the LTI system is causal, we are left with

y(t) =
∫ t

τ=−∞
x(τ)h(t− τ) dτ

In addition, if the input signal x(t) also vanishes for t < 0 then the
convolution integral simplifies even further to

y(t) =
∫ t

τ=0
x(τ)h(t− τ) dτ
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Finally, we discuss the concept of BIBO stability

BIBO stands for Bounded Input Bounded Output

We are given a bounded input signal x(t), that is, a signal that satisfies

|x(t)| ≤M

for some positive M

We ask: Under what conditions is the output y(t) of an LTI system
also bounded?
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Consider∣∣y(t)
∣∣ =

∣∣∣ ∫ ∞
τ=−∞

x(t− τ)h(τ) dτ
∣∣∣

≤
∫ ∞
τ=−∞

∣∣x(t− τ)
∣∣ ∣∣h(τ)

∣∣dτ ≤M ∫ ∞
τ=−∞

∣∣h(τ)
∣∣ dτ

From this last inequality it follows that if∫ ∞
τ=−∞

∣∣h(τ)
∣∣dτ <∞

then the output signal y(t) is bounded

Conclusion: If the impulse response h(t) is absolutely integrable (its
action is finite) then the LTI system is BIBO stable
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