Solutions Exercises Lecture 1

November 17, 2020

Exercises

Exercise 1.1.

$$sign(t) = 2u(t) - 1$$
 $\frac{d}{dt}sign(t) = 2\frac{du}{dt} = 2\delta(t)$

Exercise 1.2.

$$\delta(at+b) = \delta[a(t+b/a)] = \frac{1}{|a|}\delta(t+b/a)$$

Exercise 1.3.

$$f(t) = \int_{\tau = -\infty}^{t} \delta(\tau) \, \mathrm{d}\tau$$

We observe that

$$f(t) = 0$$
 $t < 0$ and $f(t) = 1$ $t > 0$

Conclusion: f(t) = u(t)

Exercises

Exercise 1.6.

$$f(t)\delta(t)=f(0)\delta(t), \qquad t\delta(t)=0, \qquad \int_{t=-\infty}^{\infty}t\delta(t)\,\mathrm{d}t=0$$

Exercise 1.7. $f(t) = \sin(\pi t)u(t)$ (sketch this signal!)

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \pi \cos(\pi t)u(t) + \sin(\pi t)\frac{\mathrm{d}u}{\mathrm{d}t}$$
$$= \pi \cos(\pi t)u(t) + \sin(\pi t)\delta(t)$$
$$= \pi \cos(\pi t)u(t)$$

Exercise 1.8. $g(t) = \cos(\pi t)u(t)$ (sketch this signal!)

$$\frac{\mathrm{d}g}{\mathrm{d}t} = -\pi\sin(\pi t)u(t) + \delta(t)$$