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1.1 – 1.4, 1.6, 1.9, 1.12
Additional exercises at the end of this set of slides
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The Heaviside unit step function

u(t) =
{

0 for t < 0
1 for t > 0

	
  

u(t) 

t 

1 

0 

I Can be used to model switch-on phenomena
I u(−t) can be used to model switch-off phenomena
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Oliver Heaviside
1850 – 1925
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The sign or signum function

sign(t) =
{
−1 for t < 0
+1 for t > 0

The sign function in terms of the step function

sign(t) = 2u(t)− 1 or sign(t) = u(t)− u(−t)
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The rectangular pulse function

p(t) =
{

1 for 0 < t < 1
0 for t < 0 and t > 1

The pulse function in terms of unit step functions

p(t) = u(t)− u(t− 1)
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The ramp function

r(t) =
{
t for t > 0
0 for t < 0

The ramp function in terms of the unit step function

r(t) = tu(t) or r(t) =
∫ t

τ=−∞
u(τ) dτ

�

r(t) 

t 

1 

1 0 

r(t)
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The triangular pulse function

Λ(t) =


t for 0 ≤ t ≤ 1
2− t for 1 ≤ t ≤ 2
0 for t < 0 and t > 2

The triangular pulse function in terms of ramp functions

Λ(t) = r(t)− 2r(t− 1) + r(t− 2)

�

Λ(t) 

t 

1 

1 0 2 
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The sinc function

sinc(t) =
{

sin(πt)
πt for t ∈ R \ {0}

1 for t = 0
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I A continuous-time signal x(t) is called even if

x(−t) = x(t) for all t ∈ R

I A continuous-time signal x(t) is called odd if

x(−t) = −x(t) for all t ∈ R

I A signal y(t) defined on the entire t-axis can be written as a
superposition of an even signal ye(t) and an odd signal yo(t):

y(t) = ye(t) + yo(t)

with
ye(t) = y(t) + y(−t)

2 and yo(t) = y(t)− y(−t)
2
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I The energy of a continuous-time signal x(t) is defined as

Ex =
∫ ∞
t=−∞

|x(t)|2 dt

I A continuous-time signal x(t) is called a finite-energy signal or
square integrable if its energy is finite: Ex <∞

I The integral ∫ ∞
t=−∞

|x(t)|dt

is sometimes called the action of the continuous-time signal x(t)
I A continuous-time signal x(t) is called a finite-action signal or

absolutely integrable if its action is finite
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I The power of a continuous-time signal x(t) is defined as

Px = lim
T→∞

1
2T

∫ T

t=−T
|x(t)|2 dt

I From this definition it immediately follows that

Px = 0 for a finite-energy signal x(t)
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I A continuous-time signal x(t) is called periodic if there exists a
T > 0 called a period of x(t) such that

x(t+ T ) = x(t) for every t ∈ R

I A period of a periodic signal is not unique
I If T is a period, then 2T , 3T , ... are also periods of x(t)

I The smallest period T of x(t) is called the fundamental period and
is denoted as T0

I The fundamental period T0 is unique
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Let x(t) and y(t) be two periodic signals
I Signal x(t) has a fundamental period T0

I Signal y(t) has a fundamental period T1

Now consider the sum of these two periodic signals

z(t) = x(t) + y(t)

Under what conditions (if any)
is the signal z(t) periodic?
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Answer:
The signal z(t) is periodic if there exists positive integers M and N
such that

T1

T0
= N

M
= a rational number

Furthermore, if N and M have no common divisor other than one (N
and M are relatively prime), then the fundamental period of z(t) is
Tz0 = NT0 = MT1
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Example 1: Let x(t) = sin(πt) and y(t) = sin(3πt). In this case

T0 = 2, T1 = 2/3, and T1/T0 = 1/3

Clearly, there exist integers M and N such that T1/T0 = 1/3
Take M = 3 and N = 1, for example, or M = 6 and N = 2

The integers M and N have no common divisor other than one for
M = 3 and N = 1 and the period of z(t) = x(t) + y(t) is
Tz0 = 1 · T0 = 3 · T1 = 2
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Example 2: Let x(t) = sin(
√

3πt) and y(t) = sin(πt). In this case

T0 = 2/
√

3, T1 = 2, and T1/T0 = 1/
√

3

In this case, no integers M and N can be found such that 1/
√

3 = M/N

The signal z(t) = x(t) + y(t) is not periodic
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Recall that the energy of a signal x(t) is defined as

Ex =
∫ ∞
t=−∞

|x(t)|2 dt = lim
T→∞

∫ T

t=−T
|x(t)|2 dt

and its power as

Px = lim
T→∞

1
2T

∫ T

t=−T
|x(t)|2 dt

Now let x(t) denote a continuous-time periodic signal with fundamental
period T0
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We introduce the integral

E(N)
x =

∫ t0+NT0

t=t0−NT0

|x(t)|2 dt,

where t0 is an arbitrary fixed time instant and N a positive integer

Observe that

Ex = lim
N→∞

E(N)
x and Px = lim

N→∞

1
2NT0

E(N)
x

Using the periodicity of x(t) we find that

E(N)
x = 2N

∫ t0+T0

t=t0
|x(t)|2 dt
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We observe that E(N)
x grows linearly in N as N increases

Consequently, a periodic signal is an infinite energy signal

The power of a periodic signal exists and is given by

Px = 1
T0

∫ t0+T0

t=t0
|x(t)|2 dt
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The Dirac delta function (also known as the impulse function) is
actually not a function in the standard sense.

It is a so-called distribution. It generalizes the idea of a regular function.

The delta function vanishes everywhere except at a single time instant.
Let this time instant be t = t0.

The delta function that acts at t = t0 is denoted by δ(t− t0) and is
represented graphically by an arrow as illustrated below for a delta
function that acts at t = t0 = 0.

	
  

δ(t) 

t 0 

(1) 
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Now let ϕ(t) denote a regular function/signal defined on the entire real
time axis and let ϕ be continuous at t = t0. The action of the delta
function is described by the integral∫ ∞

t=−∞
ϕ(t)δ(t− t0) dt = ϕ(t0)

With the help of the delta function, we select or sample the signal value
ϕ(t0) from ϕ(t). Only the delta function has this property. The above
formula can be considered as the definition of the delta function. It is
sometimes called the selective property, the sampling property, or the
sifting property (Dutch: zeefeigenschap) of the delta function.

Another interpretation: the area of the function ϕ(t)δ(t− t0) is equal to
ϕ(t0).
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We use the selection/sifting property to derive some additional
properties of the delta function.

Integration properties
First, take ϕ(t) = 1 for all t ∈ R in the sifting formula. We get∫ ∞

t=−∞
δ(t− t0) dt = 1.

The delta function is a signal of unit area.
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Second, let a < b and take

ϕ(t) =
{

1 if t ∈ (a, b)
0 if t < a or t > b

This gives ∫ b

t=a
δ(t− t0) dt =

{
1 if t0 ∈ (a, b)
0 if t0 < a or t0 > b

In other words, if t0 belongs to the integration interval, the integral
evaluates to one. If t0 does not belong to the integration interval, the
integral evaluates to zero.



6 The Dirac delta function | 30

Scaling property The sampling property can also be used to show
that

δ(at) = 1
|a|
δ(t), a ∈ R \ {0}.

Exercise: Verify the above scaling formula.

Special case: for a = −1 we get

δ(−t) = δ(t).

The Dirac delta function is even.
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Derivative of the Heaviside unit step function
Let us start again with the sifting property of the delta function:∫ ∞

t=−∞
ϕ(t)δ(t− t0) dt = ϕ(t0)

For later convenience, we rewrite this expression in a different form.
Specifically, we use τ as an integration variable and use t instead of t0
in the sifting formula. We obtain∫ ∞

τ=−∞
ϕ(τ)δ(τ − t) dτ = ϕ(t) (∗)

Since the delta function is even, this can also be written as∫ ∞
τ=−∞

ϕ(τ)δ(t− τ) dτ = ϕ(t)
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Now let u(t) denote the Heaviside unit step function and consider the
integral ∫ ∞

τ=−∞
ϕ(τ)u(t− τ) dτ =

∫ t

τ=−∞
ϕ(τ) dτ

Take the derivative with respect to t to obtain∫ ∞
τ=−∞

ϕ(τ)du(t− τ)
dt dτ = ϕ(t)

This is the rewritten sifting property of the delta function! Since the
delta function is the only function having this property, we conclude
that

δ(t− τ) = d
dtu(t− τ)

The Dirac delta function is equal to the derivative of the Heaviside unit
step function
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The derivative of the delta function

Consider the sifting property of equation (∗) again:
See Slide 31 ∫ ∞

τ=−∞
ϕ(τ)δ(τ − t) dτ = ϕ(t) (∗)

Let ϕ be continuously differentiable at t = t0

Differentiate the above sifting property with respect to t to obtain∫ ∞
τ=−∞

ϕ(τ)δ′(τ − t) · −1 · dτ = ϕ′(t)

or ∫ ∞
t=−∞

ϕ(t)δ′(t− t0) dt = −ϕ′(t0)

This is the sifting property of the derivative of the delta function
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Approximating the delta function

Consider the Gaussian function

fε(t) = 1√
πε
e−t

2/ε with ε > 0

Note that this function is even and is normalized in the sense that∫ ∞
t=−∞

fε(t) dt = 1 for any ε > 0

With ϕ(t) a function that is continuous at the origin, consider the
integral ∫ ∞

t=−∞
ϕ(t)fε(t) dt and let ε ↓ 0
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For “very small” values of ε, we have∫ ∞
t=−∞

ϕ(t)fε(t) dt ≈ ϕ(0)
∫ ∞
t=−∞

fε(t) dt = ϕ(0)

which is approximately the sifting property at t = 0

We write
δ(t) = lim

ε↓0
fε(t) = lim

ε↓0

1√
πε
e−t

2/ε
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Equivalent distributions
Let f(t) be a regular function continuous at t = t0. We claim that

f(t)δ(t− t0) = f(t0)δ(t− t0)

Sifting property for delta distribution on the left-hand side∫ ∞
t=−∞

ϕ(t)[f(t)δ(t− t0)] dt =
∫ ∞
t=−∞

ϕ(t)f(t)δ(t− t0) dt = ϕ(t0)f(t0)

Sifting property for delta distribution on right-hand side∫ ∞
t=−∞

ϕ(t)[f(t0)δ(t− t0)] dt = f(t0)
∫ ∞
t=−∞

ϕ(t)δ(t− t0) dt = ϕ(t0)f(t0)
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Equivalent distributions
Let f(t) be a regular function continuously differentiable at t = t0. We
claim that

f(t)δ′(t− t0) = −f ′(t0)δ(t− t0) + f(t0)δ′(t− t0)

Sifting property for derivative of delta distribution on the left-hand side∫ ∞
t=−∞

ϕ(t)[f(t)δ′(t− t0)] dt =
∫ ∞
t=−∞

ϕ(t)f(t)δ′(t− t0) dt

= −(ϕf)′
∣∣∣
t=t0

= −ϕ′(t0)f(t0)− ϕ(t0)f ′(t0)
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Equivalent distributions

Sifting properties for delta and derivative of delta distribution on
right-hand side∫ ∞

t=−∞
ϕ(t)[−f ′(t0)δ(t− t0) + f(t0)δ′(t− t0)] dt

= −f ′(t0)
∫ ∞
t=−∞

ϕ(t)δ(t− t0) dt+ f(t0)
∫ ∞
t=−∞

ϕ(t)δ′(t− t0) dt

= −f ′(t0)ϕ(t0)− f(t0)ϕ′(t0)
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Summary:
I Sifting property:∫ ∞

t=−∞
f(t)δ(t− t0) dt = f(t0) f continuous at t = t0

I Scaling property:

δ(at) = 1
|a|
δ(t) a ∈ R \ {0}
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Summary:

I Derivative of unit step:
δ(t) = du

dt

I Sifting property of the derivative of the delta function∫ ∞
t=−∞

f(t)δ′(t− t0) dt = −f ′(t0) with f cont. diff. at t = t0
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Summary:
I Multiplication property Dirac delta function:

f continuous at t = t0

f(t)δ(t− t0) = f(t0)δ(t− t0)

I Multiplication property derivative Dirac delta function:
f continuously differentiable at t = t0

f(t)δ′(t− t0) = −f ′(t0)δ(t− t0) + f(t0)δ′(t− t0)
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Exercise 1. Show that
d
dt sign(t) = 2δ(t)

Exercise 2. Show that

δ(at+ b) = 1
|a|δ(t+ b/a) a 6= 0

Exercise 3. Determine ∫ t

τ=−∞
δ(τ) dτ

Exercise 4. Determine ∫ t

τ=−∞
δ(τ)f(τ) dτ

Exercise 5. Compute ∫ ∞
t=−∞

δ(t)f(t− t0) dt
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Exercise 6. Compute ∫ ∞
t=−∞

δ(t)tdt

Exercise 7. Sketch the signal

f(t) = sin(πt)u(t)

and determine f ′(t).
Exercise 8. Sketch the signal

g(t) = cos(πt)u(t)

and determine g′(t).
Exercise 9. Show that

d
dt |t| = sign(t)

Exercise 10. Explain why ∫ ∞
t=−∞

δ′(t) dt = 0
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