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Minimal and canonical realizations
A structure which implements an N-th order transfer function is called
minimal if it uses exactly N delay elements.

A canonical realization is a “textbook structure”, the typical structure
for a certain class of transfer functions (e.g. FIR, IIR, allpass, · · · ). It is
usually minimal, with also a minimal number of operations
(multiplications with coefficients).

Generally, each filter coefficient should appear only once in the
realization. This is important for zero-phase FIR filters,

H(z) = b0 + b1z
−1 + b1z

−2 + b0z
−3

and allpass filters,

H(z) =
a2 + a1z

−1 + z−2

1 + a1z−1 + a2z−2
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Examples

(a)

(b)

x [n]

y [n]

b

a z−1

z−1

x [n]

y [n]

d e

z−1

c

b

az−1

Hb(z) = z−1(a+ b)
not minimal;
not canonical for FIR filters

Ha(z) = (z−1a+ b)(d + z−1e) + c
minimal; not canonical for FIR filters
(2nd order FIR requires only 3 coeff.)
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Transversal filter
An FIR filter can be realized using a transversal filter:

x [n]

b0 b1

z−1 z−1 z−1 z−1 z−1

y [n]

y [n] = b0x [n] + b1x [n − 1] + · · ·+ bNx [n − N]

b3 bN−2 bN−1 bNb2

Minimal and canonical for the class of N-th order FIR filters:
N delays; N + 1 multipliers for N + 1 coefficients

The coefficients h[n] = bn are directly used in the realization

The transfer function is

H(z) =
Y (z)

X (z)
= b0 + b1z

−1 + · · ·+ bNz
−N
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Recursive implementation of an FIR filter
An FIR filter can sometimes also be implemented recursively: e.g.,

y [n] =
1

M + 1

M∑
k=0

x [n − k] =
1

M + 1

(
x [n] + x [n − 1] + · · ·+ x [n −M]

)
can be written as

y [n] = y [n − 1] +
1

M + 1
(x [n]− x [n −M − 1])

z−1

x [n]

1
M+1

y [n]

x [n]

(b) recursive

(a) non-recursive

x [n −M − 1]

z−1

z−1 z−1 z−1 z−1

y [n]1
M+1

x [n]

z−1 z−1

−
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Recursive filter: direct form no. 1
Realization for a general rational filter (IIR, a0 = 1):

H(z) =
b0 + b1z

−1 + · · ·+ bNz
−N

1−a1z−1− · · ·−aMz−M
⇔ y [n] = b0x [n] + · · ·+ bNx [n − N]

+a1y [n − 1] + · · ·+ aMy [n −M]

z−1

b0

aM aM−1 aM−2 a1

b1

x [n] z−1

y [n]

z−1 z−1 z−1 z−1

z−1

bN

This is not a minimal structure: M + N delays instead of max(M,N).
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Recursive filter: direct form no. 2

Use the commutative property of the convolution: h1 ∗ h2 = h2 ∗ h1.
We may reverse the order of both partial systems.

aM aM−1 aM−2 a1

bN b0

z−1

z−1

x [n]

z−1 z−1 z−1

z−1

v [n − N] v [n − 1] v [n]

y [n]

bN−1 b1

z−1

It is seen that the delay lines can be merged (they transport the same
signal v [n])
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Recursive filter: direct form no. 2 (cont’d)

The resulting filter (minimal and canonical):

aM aM−1 aN a1

b0bN b1

z−1 z−1 z−1z−1

x [n]

y [n]

Also in this realization the filter coefficients are directly related to the
parameters in the difference equation.

This realization is very sensitive to small disturbances (quantization)
of the coefficients: the poles/zeros can move a lot. [See EE3S1]
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Cascade structure

H1(z) H2(z) Hi (z) HK (z) Y (z)X (z)

H(z) = H1(z)·H2(z) · · ·HK (z), e.g. Hk(z) = Gk
(1− zkz

−1)(1− z∗k z
−1)

(1− pkz−1)(1− p∗kz
−1)

Usually second order sections: less sensitive.

Second order sections are needed for a canonical realization of
transfer functions with real-valued coefficients.

Used if the Hk(z) all have the same passband (otherwise, large gains
are needed).
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Parallel structure

H0

H2(z)

HK (z)

X (z) Y (z)

H(z) =
H1(z)+H2(z)+· · ·+HK (z)
e.g. Hk(z) =

Ak

1− pkz−1
+

A∗
k

1− p∗kz
−1

(2nd order section for
complex conj. poles)

Less control over the location of zeros.
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Example

H(z) = G
(1− e jπ/4z−1)(1− e−jπ/4z−1)(1− e j3π/4z−1)(1− e−j3π/4z−1)

(1− 0.9z−1)(1 + 0.9z−1)(1− 0.9j z−1)(1 + 0.9j z−1)

There are several possibilities to split this into 2nd order sections with
real-valued coefficients. For a cascade, we can also choose which pair of
zeros we combine with which pair of poles. With infinite accuracy (no
quantization) this does not make a difference.
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Example (cont’d)

H1(z) =
(1− e jπ/4z−1)(1− e−jπ/4z−1)

(1− 0.9z−1)(1 + 0.9z−1)
=

1−
√
2z−1 + z−2

1− 0.81z−2

H2(z) =
(1− e j3π/4z−1)(1− e−3jπ/4z−1)

(1− 0.9j z−1)(1 + 0.9j z−1)
=

1 +
√
2z−1 + z−2

1 + 0.81z−2

0.81 −0.81

√
2

z−1

z−1 z−1

z−1
−
√
2

x [n] y [n]
G
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Transposition

Proposition: Given a realization (graph/network with nodes and edges).
Make the following changes:

1 Reverse the direction of every edge (adders ↔ nodes)

2 Reverse input and output

The transfer function is not changed (cf. Tellegen’s theorem).

Example: H(z) =
bz−1

1− abz−1

x [n]
b

a

z−1x [n]

a

b
z−1

y [n]z−1 y [n]

z−1
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Application to direct form no. 2

b0 bNb1

y [n]

z−1 z−1 z−1 z−1

aM

y [n]

aM−1 aN a1

b0bN b1

z−1 z−1 z−1z−1

x[n]

aM

x[n]

aM−1aNa1

Advantage: a much shorter critical path (all adders can operate in
parallel).
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