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Summary
Several techniques are available to design a digital filter:

Specify a desired amplitude characteristic |H(ω)|, and find the
corresponding h[n]. For the phase, we require a linear phase
characteristic. We will obtain an (anti-)symmetric FIR filter.

First design an analog filter based on the given specifications
(pass-band, damping in the stop-band). Then transform to the digital
domain. This can be done by

• sampling of the analog impulse response (“method of impulse
invariance”)

• bilinear transform s → z .

This results in an IIR filter

IIR filters usually have a lower order for the same specifications, but
they do not have linear phase (possibly resulting in pulse deformation in
the pass-band).
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Linear phase

Definition: a filter with frequency response

H(ω) = A(ω)e−j(ωα−β), −π ≤ ω ≤ π

with A(ω) real, has generalized linear phase.

The filter is similar to a delay for signals in the pass-band (where
A(ω) ≈ 1), and does not distort these signals.

Only FIR filters can have linear phase. Moreover, they must satisfy
the symmetry property: h[n] = ϵh[N − n], where ϵ = ±1, and N is
the filter order.

The center of the impulse response is N/2. If N is even, this
corresponds to a coefficient h[N/2], else it doesn’t. If ϵ = −1 then
h[N/2] = 0.

This results in four possibilities (Type I – Type IV).
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Examples

Type I: ϵ = 1, N = 4 is even:

h[n] = [· · · , 0, 1 , 2, 3, 2, 1, 0, · · · ]
H(z) = 1 + 2z−1 + 3z−2 + 2z−3 + z−4

H(ω) = 1 + 2e−jω + 3e−j2ω + 2e−j3ω + e−j4ω

= [3 + 4 cos(ω) + 2 cos(2ω)] · e−j2ω

Type IV: ϵ = −1, N = 3 is odd:

h[n] = [· · · , 0, 1 , 2,−2,−1, 0, · · · ]
H(z) = 1 + 2z−1 − 2z−2 − z−3

H(ω) = 1 + 2e−jω − 2e−j2ω − e−j3ω

= [4 sin(12ω) + 2 sin(11
2ω)] · j e

−j1 1
2
ω
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Linear phase

Type I: ϵ = 1, N is even: H(ω) = e−jωN/2
∑

k ak cos(ωk)

A(ω) = A(−ω), β = 0

Type II: ϵ = 1, N is odd: H(ω) = e−jωN/2
∑

k ak cos(ω(k − 1/2))

H(ω) = 0 for ω = π: cannot be a high-pass filter

A(ω) = A(−ω), β = 0

Type III: ϵ = −1, N is even: H(ω) = je−jωN/2
∑

k ak sin(ωk)

H(ω) = 0 for ω = 0, π: cannot be a low-pass nor a high-pass filter

A(ω) = −A(−ω), β = π
2

Type IV: ϵ = −1, N is odd: H(ω) = je−jωN/2
∑

k ak sin(ω(k − 1/2))

H(ω) = 0 for ω = 0: cannot be a low-pass filter

A(ω) = −A(−ω), β = π
2

The phase delay is α = N/2, always equal to half the filter order.
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Design example

Design a low-pass filter with ωp = 0.2π, ωs = 0.3π, δp = δs = 0.01.

Approach (“truncated impulse response design technique”):

Define the required amplitude response A(ω)

Select the type of filter: symmetric (ϵ = 1) or anti-symmetric
(ϵ = −1), even or odd filter order

Choose the filter order N; the corresponding phase characteristic is
e−jωN/2 of j e−jωN/2

Apply an Inverse Discrete-Time Fourier Transform to obtain the
impulse response

Truncate at order N; hence we obtain an approximation
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Design example (2)
For our example: the requested amplitude response A(ω) is:

A(ω) =

{
1 , |ω| < 0.25π = 1

2(ωp + ωs)
0 , elsewhere

Select the phase characteristic

We select a filter with a symmetric impulse response, i.e., Type I or II.
(The other types cannot give a low-pass filter.)

The resulting phase function is ϕ(ω) = ωN/2.

The desired transfer function is:

Hd(ω) =

{
e−jωN/2 , |ω| < 0.25π
0 , elsewhere

The resulting impulse response is (IDTFT):

hd [n] =
1

2π

∫ 0.25π

−0.25π
e jω(n−N/2)dω = 0.25 sinc[0.25(n − N/2)]
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Design example (3)

We select for example a filter order N = 20. The impulse response will
then be trunctated to n ∈ [0, 20]. This will change the transfer function;
we apply a DTFT to see what the resulting filter is in frequency domain.
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The pass-band and stop-band are OK, but the ripples are too large.
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Design example (4)

We can try to reduce the ripples by selecting a larger filter order (e.g.,
N = 40 of N = 80)
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A larger N results in a smaller transition band, but the ripples have
equal magnitude! This is the Gibb’s effect.
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Gibb’s effect

Truncating an ‘ideal’ impulse response hd [n] to h[n] corresponds to
multiplication of h[n] with a rectangular window wr [n]:

h[n] = hd [n]wr [n] , wr [n] =

{
1 , n = 0, · · · ,N
0 , elsewhere

Multiplication in time domain corresponds to convolution in frequency
domain: H(ω) = Hd(ω) ∗Wr (ω),

Wr (ω) =
N∑

n=0

e−jωn =
1− e−jω(N+1)

1− e−jω
=

sin(0.5ω(N + 1))

sin(0.5ω)
e−j0.5ωN
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Gibb’s effect

The function

D(ω,M) =
sin(0.5ωM)

sin(0.5ω)

is called the Dirichlet kernel.

The magnitude of the first side lobe is
approximately 9% of the peak value (-13
dB), independent of M.
The main lobe has width ≈ 4π/M (first
zero crossings).
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Other windows

We can try to reduce the Gibb’s effect by selecting another window (not
rectangular).

Time domain: h[n] = hd [n]w [n].

The window has to be symmetric: w [n] = w [N − n], to keep the
required symmetry of h[n].

Frequency domain: H(ω) = Hd(ω) ∗W (ω).

Design criteria are:

– The width of the main lobe of W (ω) should be as small as
possible: this determines the width of the transition band.

It usually is a multiple of 4π/M, with M = N + 1. Thus, we can
control this using the filter order.

– The amplitude of the first side lobe should be as small as possible.
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Examples of windows

Bartlett window: convolve the rectangular window with itself:

wb = wr ∗ wr ⇔ Wb(ω) = Wr (ω)
2

Width: 8π/M, side lobe level δp, δs = 0.05 (-27 dB)
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Examples of windows (cont’d)

Hann window: the weighted sum of three Dirichlet kernels, designed
to reduce the side lobes.

w [n] =
1

2
(1− cos

2πn

N
)wr [n]

Width: 8π/M, side lobe level δp, δs = 0.0063
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Examples of windows (cont’d)

Hamming window: empirically better weighted sum of three
Dirichlet kernels.

w [n] = (0.54− 0.46 cos
2πn

N
)wr [n]

Width: 8π/M, side lobe level δp, δs = 0.0022.
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Examples of windows (cont’d)

Blackman window: weighted sum of five Dirichlet kernels

Width: 12π/M, side lobe level δp, δs = 0.0002
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Examples of windows (cont’d)

Kaiser window: obtained by computer optimization (minimize the
width of the peak, for a fixed energy of the side lobes).

This design has a parameter α specifying the trade-off. E.g., α = 10
gives width 12π/M, side lobe level δp, δs = 0.00001
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Returning to our filter design example

Design a low-pass filter with
ωp = 0.2π, ωs = 0.3π, δp = δs = 0.01.

For δp = δs = 0.01, a Hann window suffices.

The transition band is 0.1π = 8π/M, hence we can take M = 80, i.e.,
filter order N = 79.
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Design a digital differentiator
Analog: Ha(Ω) = jΩ Digital: H(ω) = j

ω

T
, −π ≤ ω ≤ π,

with T : sample period.

Because of the ’j ’ we need to take Type III or IV (ϵ = −1).

Resulting desired frequency response:

Hd(ω) =
jω

T
e−j(ωN/2) =

ω

T
e j(0.5π−0.5ωN)

Corresponding impulse response:

hd [n] =
1

2πT

∫ π

−π
ωe j(ωn+

1
2 π−1

2 ωN)dω =



(−1)(n−
1
2N)

(n − 1
2N)T

N even, n ̸= 1
2N

0 N even, n = 1
2N

(−1)(n−
1
2N+

1
2)

π(n − 1
2N)2T

N odd.
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Design a digital differentiator (2)

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1

n

h
[n

]

−1 −0.5 0 0.5 1
−4

−2

0

2

4

ω / π

A
(ω

)

N=16

0 5 10 15
−2

−1

0

1

2

n

h
[n

]

−1 −0.5 0 0.5 1
−4

−2

0

2

4

ω / π

A
(ω

)

N=15

An odd filter order N (type IV) results in a much faster decay of h[n],
because of the square in the denominator.

This is because for even N, the amplitude response is anti-symmetric
and periodic in 2π, resulting in A(±π) = 0 (not desired for a
high-pass characteristic). Hence, Type III is not suitable.
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Design tools
In practice, we use a computer program for FIR filter design.

Often used: Parks/McClellan technique, also known as the Remez
exchange algoritm

Specify pass-band and stop-band, e.g., F = [0, 0.4, 0.6, 1] specifies a
pass-band from 0 until ωp = 0.4π, a stop-band from ωs = 0.6π until
π.

Specify the desired reponse at these critical frequencies (F ), e.g.,
Hd = [1, 1, 0, 0].

Specify the ripple, as a weight vector W = [1/δp, 1/δs ].

Select the filter order N (using rules of thumb; trial and error)

The algoritm searches h[n] such that max
ω

∥W (ω) (Hd(ω)− A(ω)) ∥ is

as small as possible (“minimax” optimization).
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Design tools

Matlab: h = remez(N,F,Hd,W)

(function is now called firpm)

Result (N = 11, δp = 0.05, δs = 0.01):
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Alternative (IIR filters): method of impulse invariance

First design a suitable analog filter. E.g., a Butterworth,

|Ha(Ω)|2 =
1

1 + (Ω/Ωc)2N
⇒ Ha(s) =

(Ωc)
N

(s − s0)(s − s1) · · · (s − sN−1)

(Ωc is the cut-off frequency, poles si are on a circle with radius Ωc)

Sample the corresponding impulse response ha(t) with period Ts :

h[n] = ha(nTs)

During sampling, aliasing can occur:

H(ω) =
1

Ts

∑
k

Ha(Ω− 2πk

Ts
) , Ω =

ω

Ts

The frequency response in digital domain is periodic. Without aliasing,

H(ω) =
1

Ts
Ha(

ω

Ts
) , |ω| < π
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Method of impulse invariance

T π 2π

π/Ts

−π

h[n]

ha(t) Ha(Ω)

H(ω)

0

0

aliasing ω

t

n

Ω

1

1/T

This technique is not suitable for high-pass characteristics because of
aliasing.

17 digital filter design 24 / 34



Method of impulse invariance
If we know Ha(s), we do not need to first compute ha(t).

Determine the poles of Ha(s):

Ha(s) =
∑
k

Ak

s − sk

The corresponding analog impulse response is

ha(t) =
∑
k

Ake
sk tu(t)

The sampled version is

h[n] =
∑
k

Ake
sknTsu[n] =

∑
k

Ak(e
skTs )nu[n]

The corresponding z-transform is

H(z) =
∑ Ak

1− pkz−1
, pk = eskTs
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Method of impulse invariance

The filter order is constant,

A ‘stable pole’ sk in the left half plane (Re(sk) < 0) is transformed to
a pole pk = eskTs within the unit circle (|pk | < 1).

Causality and stability are preserved.
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Second alternative: bilinear transform
Given an analog filter Ha(s). We can transform this into a digital filter
by the mapping

H(z) = Ha(s) , with s :=
1− z−1

1 + z−1

Example (with b > 0)

Ha(s) =
1

s + b
→

H(z) =
1

1−z−1

1+z−1 + b
=

1

1 + b
· 1 + z−1

1− 1−b
1+b z

−1

The pole at s = −b is mapped to a

pole at z = ρ =
1− b

1 + b
.
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Derivation: bilinear transform
Simple example: consider an integrator Ha(s) =

Y (s)
X (s) =

1
s , or

y(nT ) = y((n − 1)T ) +

∫ nT

(n−1)T
x(τ)dτ

Approximate the integral using a trapezium rule:

y(nT ) ≈ y((n − 1)T ) +
T

2
[x(nT ) + x((n − 1)T )]

The corresponding z-transform gives

Y (z) = z−1Y (z) +
T

2
[X (z) + z−1X (z)]

with transfer function

H(z) =
Y (z)

X (z)
=

T

2

1 + z−1

1− z−1

The same result is obtained by substituting in Ha(s) = 1/s the s by

s → 2

T

1− z−1

1 + z−1
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Properties of the bilinear transform
The transformation

s =
1− z−1

1 + z−1
⇔ z =

1 + s

1− s

is called the bilinear transform.

If s = σ + jΩ with σ < 0, then |z | < 1

If Ha(s) has a pole at s = sk , then H(z) has a pole at pk =
1 + sk
1− sk

If Ha(s) is causally stable, then also H(z). The filter order remains
the same.

The imaginary axis s = jΩ is mapped one-to-one to the unit circle

s = jΩ ⇔ z =
1 + jΩ

1− jΩ
=

A

A∗ ⇒ |z | = 1
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Properties of the bilinear transform (cont’d)

With s = jΩ and z = e jω we find

ω = 2arctan(Ω) ⇔ Ω = tan(
ω

2
)
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High frequencies (Ω → ∞) are compressed towards ω → π. Until
Ω = 1, the mapping is approximately linear.
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Properties of the bilinear transform (cont’d)

The bilinear transform maps the Ω-axis non-linearly to the unit circle:
no aliasing but a deformation.
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Transformation from analog to digital filter

After designing an analog filter, we can transform this to a digital filter.
We have seen these transforms:

impulse invariance (not suitable for high-pass or band-stop)

bilinear transform

Alternative: first design an analog low-pass filter, transform to a digital
filter, apply a frequency transformation in digital domain.

(We do not discuss these transforms)

Also suitable for high-pass or band-stop

Not equivalent, except for bilinear transform

Design specifications for a digital filter first have to be translated to
specs for an analog filter. After the design we return to the digital
domain via the selected transform.
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Example: design using digital specifications

Design a first-order digital low-pass filter with 3-dB band-width at
ωc = 0.2π.

Solution:

• Bilinear transform of ωc to the analog frequency domain:
Ωc = tan(ωc/2) = 0.325

• Design a first-order Butterworth filter:

|Ha(s)|2 =
1

1 + (Ω/Ωc)2
= Ha(s)Ha(−s)

∣∣∣
s=jΩ

⇒ Ha(s) =
Ωc

s +Ωc

• Bilinear transform of Ha(s) back to H(z)

H(z) =
Ωc

1−z−1

1+z−1 +Ωc

=
Ωc(1 + z−1)

1 + Ωc − z−1(1− Ωc)
=

0.245(1 + z−1)

1− 0.509 z−1

• Check: |H(ω = 0)| = 1, |H(ω = 0.2π)|2 = 1/2.
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Example: design using digital specifications (cont’d)
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	Summary

