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How can I design an analog filter H(s) that meets certain specifications?

Stopband ripple δs
0

passband ripple 1± δp

|H(Ω)|

passband

transition band

stopband

Ωp Ωs

Note differences in notation. We often write H(Ω) instead of H(jΩ).

16 analog filter design 2 / 31



Continuous-time filter functions

General form:

H(s) =
B(s)

A(s)
=

b0 + b1s + · · ·+ bns
n

1 + a1s + · · ·+ ansn

Stability and causality:

poles of H(s) in left half plane

⇔ zeros of A(s) in left half plane

Frequency spectrum: |H(Ω)|2 = |H(jΩ)|2 = H(s)H(−s)
∣∣∣
s=jΩ

Damping (loss): α(Ω) =
1

|H(Ω)|2
, usually specified in dB:

α(Ω)[dB] = −10 log(|H(Ω)|2) = −20 log(|H(Ω)|)
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Filter specifications

Example: specification of a low-pass filter

Stopband ripple δs
0

passband ripple 1± δp

|H(Ω)|

passband

transition band

stopband

Ωp Ωs

A causal filter has a finite number of zeros and cannot be an ideal
filter (Paley-Wiener): |H(Ω)| cannot be constant over an interval.

Usually, only the amplitude spectrum is specified, because the phase
spectrum is (almost) completely determined by this (cf. the Hilbert
transform or the causality requirement)
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Practical design
We limit ourselves to design techniques based on amplitude
specifications.

Specs for low-pass filters (the other types are derived from these)

Ωp also written as Ω0: pass-band frequency

Gp: minimal squared-amplitude in the pass-band (or αp in dB)

Ωs : stop-band frequency

Gs : maximal squared-amplitude (or αs in dB)
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Butterworth filter

We start from the following characteristics:

• |H(jΩ)|2 is an even function • lim
Ω→0

|H(jΩ)|2 = 1

• H(s) is rational, order n • lim
Ω→∞

|H(jΩ)|2 = 0

so that

|H(jΩ)|2 =
1 +

n−1∑
r=1

brΩ
2r

1 +
n∑

r=1

arΩ
2r
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Butterworth filter
The “Butterworth filter” is obtained if we require |H(jΩ)|2 to be
maximally flat for Ω = 0 and Ω = ∞:

2n − 1 derivatives equal to zero at Ω = 0

⇒ ar = br r = 1, 2, . . . , n − 1

2n − 1 derivatives equal to zero at Ω = ∞

⇒ br = 0 r = 1, 2, . . . , n − 1

This results in

|H(jΩ)|2 = 1

1 + anΩ2n
or |H(jΩ)|2 = 1

1 + ϵ2Ω2n
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Butterworth filter
Filter parameters are ϵ and n. How to design them?

Example (ϵ = 1):

|H(jΩ)|2 = 1

1 + (Ω)2n

Larger n ⇒ steeper roll-off (smaller transition band)

Independent of n, these filters have a cutoff frequency (3 dB
damping) at Ωc = 1:

|H(Ωc = 1)|2 = 1

1 + (1)2n
=

1

2
⇒ α(Ωc) = −10 log

(
1

2

)
= 3 dB
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Butterworth filter

What if we want a 3 dB point at some other Ωc? Use as template

|H(jΩ)|2 = 1

1 + (Ω/Ωc)2n

What if Ω0 is specified, and a corresponding damping α(Ω0)? Use

|H(jΩ)|2 = 1

1 + ϵ2(Ω/Ω0)2n

For this template, independent of n, we have at Ω0

|H(jΩ0)|2 =
1

1 + ϵ2
⇒ αp = α(Ω0) = 10 log(1 + ϵ2)

⇒ ϵ =
√
10αp/10 − 1

Next, find the minimal n from the damping condition at Ωs .
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Example 1: Design Butterworth filter
Determine the minimal order of the Butterworth filter with pass-band
frequency F0 = 1.2 kHz, maximal damping in the pass-band αp = 0.5
dB, stop-band frequency Fs = 1.92 kHz, and minimal damping in the
stop-band αs = 23 dB

Solution

We start from

|H(jΩ)|2 = 1

1 + ϵ2(Ω/Ω0)2n
with Ωs/Ω0 = Fs/F0 = 1.6

From αp = α(Ω0) we derive ϵ:

|H(Ω0)|2 =
1

1 + ϵ2
= 10−αp/10 ⇒ ϵ =

√
10αp/10 − 1 = 0.3493
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Example 1 (cont’d)

From ϵ, Ωs/Ω0 and αs we derive the minimal n:

|H(Ωs)|2 =
1

1 + ϵ2(Ωs/Ω0)2n
= 10−αs/10

⇒ n ≥ log[(10αs/10 − 1)/ϵ2]

2 log(Ωs/Ω0)
= 7.87

The derivation of H(s) from |H(jΩ)|2 is called spectral factorization,
you’ll need a computer for this.

Use |H(jΩ)|2 = H(jΩ)H(−jΩ) = H(s)H(−s)
∣∣∣
s=jΩ

Analytic extension to the entire complex plane: substitute Ω = −js

H(s)H(−s) = |H(jΩ)|2
∣∣∣
Ω=−js
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What is H(s) for the Butterworth filter?

H(s)H(−s) = |H(jΩ)|2
∣∣∣
Ω=−js

=
1

1 + ϵ2(−js)2n
=

1

1 + ϵ2(−s2)n

The poles of H(s)H(−s) follow as

(−jsk)
2n = −1/ϵ2 ⇒ sk = (1/ϵ)1/ne j[(2k−1)π/(2n)+π/2], k = 1, 2, . . . , 2n

These are located on a circle with radius (1/ϵ)1/n = Ωc

Ωc

π/(2n)
s-plane

n = 4
Stable: poles of H(s) are
the n poles in the left-half
plane
Then H(−s) will have the
remaining n poles in the
right-half plane
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Chebyshev filter

The Butterworth filter has maximal error in the pass-band at Ω0,
elsewhere the error is smaller. Perhaps the filter order can be made
smaller (or the response sharper for the same filter order) by distributing
the error more uniformly over the pass-band?

We keep the maximal flatness in Ω = ∞:

2n − 1 derivatives zero at Ω = ∞ ⇒ br = 0, r = 1, 2, . . . , n − 1

|H(jΩ)|2 = 1

1 +
∑n

r=1 arΩ
2r

=:
1

1 + ϵ2[Tn(Ω)]2

where Tn(Ω) is an even or odd polynomial of order n (because T 2
n (Ω)

has to be even)

In the pass-band we must have: |Tn(Ω)| ≤ 1.

Elsewhere: |Tn(Ω)| → ∞
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Chebyshev filter
From now on, normalize the
pass-band to −1 ≤ Ω ≤ 1:

|H(jΩ)|2 = 1

1 + ϵ2T 2
n (Ω)

with

|Tn(Ω)| ≤ 1 (|Ω| < 1)
|Tn(Ω)| → ∞ (|Ω| → ∞)

Example polynomials:

T0(Ω) = 1
T1(Ω) = Ω
T2(Ω) = 2Ω2 − 1
T3(Ω) = 4Ω3 − 3Ω
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Chebyshev polynomials
Idea: Tn(Ω) has to oscillate between -1 and 1 in the pass-band, hence
set

Tn(Ω) = cos(n θ(Ω)) − 1 ≤ Ω ≤ 1

How do we design θ(Ω) such that Tn(Ω) is an even or odd polynomial
of order n?

From the property cos(α+ β) + cos(α− β) = 2 cosα cosβ we obtain
the recursion

Tn(Ω) = 2Tn−1(Ω) cos(θ(Ω))− Tn−2(Ω)

with T0(Ω) = 1 and T1(Ω) = cos(θ(Ω)).

Repeat this to obtain

Tn(Ω) = cn[cos(θ(Ω))]
n+cn−2[cos(θ(Ω))]

n−2+cn−4[cos(θ(Ω))]
n−4+· · ·
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Chebyshev polynomials

Tn(Ω) is an even or odd polynomial in Ω of order n if θ(Ω) = cos−1Ω
(|Ω| ≤ 1). This gives cos(θ(Ω)) = Ω.

Hence, the function Tn(Ω) = cos(n cos−1(Ω)) satisfies

Tn(Ω) = 2ΩTn−1(Ω)− Tn−2(Ω)

and is an even or odd polynomial of order n.

Also valid: cosh(α+ β) + cosh(α− β) = 2 coshα coshβ

If we use this to expand cosh(n cosh−1(Ω)), (|Ω| > 1) we obtain the
same recursion, so the same polynomials!
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Chebyshev polynomials

The recursion
Tn(Ω) = 2ΩTn−1(Ω)− Tn−2(Ω) gives

T0(Ω) = 1
T1(Ω) = Ω
T2(Ω) = 2Ω2 − 1
T3(Ω) = 4Ω3 − 3Ω
T4(Ω) = 8Ω4 − 8Ω2 + 1
T5(Ω) = 16Ω5 − 20Ω3 + 5Ω

...

Tn(Ω) =

{
cos(n cos−1(Ω)), (|Ω| ≤ 1)
cosh(n cosh−1(Ω)), (|Ω| > 1)
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Chebyshev filters

Resulting filters:

|H(jΩ)|2 = 1

1 + ϵ2T 2
n (Ω)

or more general

|H(jΩ)|2 = 1

1 + ϵ2T 2
n

(
Ω
Ω0

)
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Design of Chebyshev filters
For the design of ϵ and n, we usually start from

|H(jΩ)|2 = 1

1 + ϵ2T 2
n

(
Ω
Ω0

)
with

Tn(Ω) =

{
cos(n cos−1(Ω)), (|Ω| ≤ 1)
cosh(n cosh−1(Ω)), (|Ω| > 1)

If Ω0 and a damping α(Ω0) is specified:

Use that T 2
n (1) = 1 for any n

|H(jΩ0)|2 =
1

1 + ϵ2
⇒ αp = α(Ω0) = 10 log(1 + ϵ2)

⇒ ϵ =
√
10αp/10 − 1

Same as for Butterworth! Use this to determine ϵ from the specs.
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Design of Chebyshev filters

Next, find n from the damping condition at Ωs . You will need to
evaluate Tn(Ωs/Ω0).

Since Ωs > Ω0, use the “cosh” formula.

If needed, calculate the cut-off frequency (3 dB level) Ωc > Ω0:

[cosh(n cosh−1(Ωc/Ω0))]
2 = 1/ϵ2

⇒ Ωc = Ω0 cosh(1/n · cosh−1(1/ϵ))

Note: cosh(x) = 1
2 (e

x + e−x) ⇒ cosh−1(x) = ln(x +
√
x2 − 1)

16 analog filter design 20 / 31



Example 2: Design Chebyshev filter
Determine the minimal order of a Chebyshev filter with pass-band
frequency F0 = 1.2 kHz, maximal damping in the pass-band αp = 0.5
dB, stop-band frequency Fs = 1.92 kHz, and minimal damping in the
stop-band αs = 23 dB.

Solution:

We start from

|H(jΩ)|2 = 1

1 + ϵ2T 2
n (Ω/Ω0)

with Ωs/Ω0 = Fs/F0 = 1.6

From αp = α(Ω0) we derive ϵ:

|H(Ω0)|2 =
1

1 + ϵ2
= 10−αp/10 ⇒ ϵ =

√
10αp/10 − 1 = 0.3493
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Example 2 (cont’d)

From ϵ, Ωs/Ω0 and αs we derive the minimal order n:

|H(Ωs)|2 =
1

1 + ϵ2[cosh(n cosh−1(Ωs/Ω0))]2
= 10−αs/10

⇒ n ≥ cosh−1(
√

(10αs/10 − 1)/ϵ2)

cosh−1(Ωs/Ω0)
= 3.82
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What is H(s) for the Chebyshev filter?

Like with the Butterworth filter we look for H(s) for which

H(s)H(−s) = |H(jΩ)|2
∣∣∣
Ω=−js

=
1

1 + ϵ2T 2
n (−js)

Poles of H(s)H(−s) satisfy

T 2
n (−jsk) = −1/ϵ2

⇒ sk = σk + jΩk , k = 1, · · · , 2n

These turn out to lie on an ellipse. Poles of
H(s) are the n poles in the left-half plane

π/(2n)
s-plane

n = 4
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Elliptic filter

Generalization of the Chebyshev filter:

|H(jΩ)|2 = 1

1 + ϵ2R2
n(Ω)

with Rn(Ω) an arbitrary rational function in Ω.

We will not discuss this any further.
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Frequency transformations: lowpass to lowpass

To transform a prototype filter into a desired filter we use
transformations of the frequency axis:

low-pass to low-pass : shift a frequency from Ω = 1 to Ω = Ω0:

substitute: Ω → Ω

Ω0
s → s

Ω0

This maps

|H(Ω)|2 = 1

1 + Ω2n

to

|H(Ω)|2 = 1

1 + ( Ω
Ω0

)2n
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Low-pass to low-pass

More generally: shift a frequency of Ω = Ω0 to Ω = Ω′
0:

substitute: Ω → Ω
Ω0

Ω′
0

s → s
Ω0

Ω′
0

|H(Ω)|2 = 1

1 + ( Ω
Ω0

)2n
⇒ |H(Ω)|2 = 1

1 + ( Ω
Ω′

0
)2n

1/2

1

δ2s

0

δ2p

Ω

1

δ2s

0

δ2p

Ω

1

δ2s

0

δ2p

Ω1 Ωc Ω′
c

|H(Ω)|2 |H(Ω)|2 |H(Ω)|2

1/2 1/2
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Frequency transforms (2)

low-pass to high-pass: mapping 1 → Ω0, and Ωs → Ω0/Ωs

Ω → Ω0

Ω
s → Ω0

s

More generally: mapping Ω0 → Ω′
0 with reversal of the frequency axis

Ω → Ω0Ω
′
0

Ω
, s → Ω0Ω

′
0

s
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Example: low-pass to high-pass
Suppose the template low-pass filter has cut-off frequency Ω = Ωc :

|H(Ω)|2 = 1

1 + ( Ω
Ωc

)2n

Transform Ω → ΩcΩ′
c

Ω gives a high-pass filter with cut-off frequency Ω′
c :

|H(Ω)|2 = 1

1 + (Ω
′
c

Ω )2n

1/2

|H(Ω)|2

1

δ2s

0

δ2p

Ω

|H(Ω)|2

1

δ2s

0

δ2p

Ωc

Ω

Ω′
c

1/2
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Example 3: use of the low-to-high transform
Design an analog high-pass filter design with specifications:

– Pass-band: starting at Fp = 50 Hz; ripple in the pass-band: ≤ 1 dB

– Stop-band: until Fs = 40 Hz; stop-band damping: ≥ 30 dB.

We start with a Butterworth low-pass filter structure of the form

|H(Ω)|2 = 1

1 + ϵ2(Ω/Ωp)2n

which we design such that Ωp = 2π · 50, and |H(Ωp)|2 equal to -1 dB.

δ2p = 1
1+ϵ2

|H(Ω)|2

1

δ2s

0

Ωp

Ω

Ω′
s
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Example 3 (cont’d)

Next, we apply to H(Ω) a low-to-high transform:

Ω →
Ω2
p

Ω
gives |G (Ω)|2 = 1

1 + ϵ2(Ωp/Ω)2n

This is a high-pass filter with pass-band Ωp.

Ωp

|G(Ω)|2

1
δ2p = 1

1+ϵ2

δ2s

0 Ω

Ωs

Instead of first designing H(Ω), we will directly determine ϵ and n for
G (Ω).
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Example 3 (cont’d)
So we use as template highpass filter:

|G (Ω)|2 = 1

1 + ϵ2
(
Ωp

Ω

)2n

Determine ϵ by evaluation at Ωp = 2π · 50:

|G (Ωp)|2 =
1

1 + ϵ2
= 10−1/10 ⇒ ϵ =

√
101/10 − 1 = 0.5088.

Determine n by evaluation at Ωs = 2π · 40:

|G (Ωs)|2 =
1

1 + ϵ2(2π·502π·40)
2n

= 10−30/10 ⇒ (
50

40
)2n =

1030/10 − 1

ϵ2
= 3858

⇒ n =
1

2

log(3858)

log(5/4)
= 18.5

We take filter order n = 19.
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