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The Discrete-time Fourier transform (DTFT)
The DTFT is defined as

X (ω) = F{x [n]} :=
∞∑

n=−∞
x [n]e−jωn

Continuous function of ω (while x [n] is a time series)

X (ω + 2π) = X (ω): periodic in ω, period 2π:

It sufficies to consider the interval ω ∈ [−π, π].

X (ω) is called “the spectrum”; it measures the frequency content

Sufficient condition for convergence of the infinite sum:

|
∞∑

n=−∞
x [n]e−jωn| ≤

∞∑
n=−∞

|x [n]| |e−jωn| =
∞∑

n=−∞
|x [n]| < ∞

i.e., x [n] is absolutely summable (x ∈ ℓ1).
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Relation to the z-transform

The DTFT is obtained from the z-transform by setting z = e jω

(assuming that the unit circle |z | = 1 is in de ROC).

We often write X (ω) as X (e jω), cf. the book. (The book’s notation
avoids confusion between X (ω) and X (z), different functions.)

We immediately obtain (LTI systems):

y [n] = h[n] ∗ x [n] ⇔ Y (ω) = H(ω)X (ω) (filters!)

H(ω) =
∑

h[n]e−jωn exists if the system is BIBO stable (h ∈ ℓ1, i.e.,
the unit circle is in the ROC of H(z)).

δ[n] ⇔ 1
u[n] ⇔ (no ordinary DTFT because of ROC)
δ[n − N] ⇔ e−jωN

anu[n] (|a| < 1) ⇔ 1

1− ae−jω
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Exercise [trial exam 2016]

Given X (ω) = cos(ω), determine x [n].

X (ω) =
1

2
e jω +

1

2
e−jω ⇒ x [n] =

1

2
δ[n + 1] +

1

2
δ[n − 1]
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Exercise [exam January 2023]

Given the DTFT X (e jω) = e−j2ω cos2(ω). Determine x [n].

Hint: first determine the z-transform.

Rewrite (using z = e jω) as a function of z :

X (z) = z−2 1

4
(z + z−1)2 =

1

4
(1 + 2z−2 + z−4)

Hence

x [n] =
1

4
(δ[n] + 2δ[n − 2] + δ[n − 4])
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Frequency plots
X (ω) is complex. To make a plot, write X (ω) = |X (ω)|e jϕ(ω), where
|X (ω)|: amplitude spectrum, ϕ(ω): phase spectrum

Example

plot the amplitude and phase spectrum of X (ω) =
1

1− ae−jω

Amplitude spectrum |X (ω)| is found via

|X (ω)|2 = X (ω)X ∗(ω) =
1

1− ae−jω

1

1− ae jω
=

1

1 + a2 − 2a cos(ω)

Phase spectrum

1

1− ae−jω
=

1

(1− a cos(ω)) + ja sin(ω)

⇒ ϕ(ω) = − tan−1

(
a sin(ω)

1− a cos(ω)

)
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Discrete-time Fourier Transform
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Estimating frequency plots using phasors

Given a rational transfer function, e.g. X (z) =
z − b

z − a
, we can sketch a

plot of |X (ω)| and ϕ(ω) using phasors.

b

z = e jω

z − b

a

z − a

−π
π

ω = 0

|X (ω)| = |z − b|
|z − a|

ϕ(ω) =
∠(z − b)− ∠(z − a) mod 2π
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Estimating frequency plots using phasors

To gain some insight: compute this for a number of values of ω.

−π −π/2 0 π/2 π
0

2

4

ω

|X(ω)|

−π −π/2 0 π/2 π
−π

0

π

ω

φ(ω)

a=0.7
b=0

−π −π/2 0 π/2 π
0

10

20

ω

|X(ω)|

−π −π/2 0 π/2 π
−π

0

π

ω

φ(ω)

a=0.9
b=−0.8

15 dtft 10 / 35



Exercise [exam January 2021]
Sketch the magnitude spectrum |H(e jω)| corresponding to the pole-zero
plot:
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angle(H( ))
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Example: DTFT of a pulse

p[n] = u[n]− u[n − N] , pulse of length N

P(z) = 1 + z−1 + · · ·+ z−(N−1) =
1− z−N

1− z−1

1

z-plane

0

ω = 2π/N

(7)

j

P(ω) =
1− e−jωN

1− e−jω
=

e jωN/2 − e−jωN/2

e jω/2 − e−jω/2
e−jω(N−1)/2

=
sin(ωN/2)

sin(ω/2)
e−jω(N−1)/2

15 dtft 12 / 35



DTFT of a pulse (cont’d)

The amplitude spectrum is

A(ω) = |P(ω)| =
∣∣∣∣sin(ωN/2)

sin(ω/2)

∣∣∣∣
“periodic sinc-function” (Dirichlet-function) with A(0) = N

The phase spectrum is ϕ(ω) = −ω(N − 1)/2 (lineair phase) plus
phase jumps of π due to sign changes of sin(ωN/2).

−π −π/2 0 π/2 π
0

5

10

ω

|X(ω)|

−π −π/2 0 π/2 π
−π

−π/2

0

π/2

π

ω

φ(ω)

(N = 8)

zero crossings for ω = ±2π
N k (k ̸= 0)

Phase slope ⇔ delay
Phase jumps (π) ⇔ change of sign
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DTFT of a pulse (cont’d)

The linear phase corresponds to a delay z−(N−1)/2, half the duration
of the pulse.

The first zero in the amplitude spectrum (right of the peak at ω = 0)
gives an indication of the “bandwidth”

∆ω =
2π

N

The “bandwidth” is inversely proportional to the duration of the
pulse.

In many applications where we collect N samples (or have N
uniformly spaced sensors), this is related to the resolution of a system.
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Example: DTFT of a non-causal signal
Determine the spectrum of the non-causal signal x [n] = a|n| with
|a| < 1.

The z-transform of x [n] is

X (z) =
∞∑
n=0

anz−n+
∞∑
n=0

anzn−1 =
1

1− az−1
+

1

1− az
−1 =

1− a2

1− a(z + z−1) + a2

with as ROC the intersection of the ROC of the causal and anti-causal
part:

ROC: |a| < |z | < 1

|a|
The ROC contains the unit circle. Hence

X (ω) = X (z = e jω) =
1− a2

1− a(e jω + e−jω) + a2
=

1− a2

1 + a2 − 2a cos(ω)

Note that x [n] is even and X (ω) is real-valued (ϕ(ω) = 0).

15 dtft 15 / 35



Example: DTFT of a non-causal signal
Determine the spectrum of the non-causal signal x [n] = a|n| with
|a| < 1.

The z-transform of x [n] is

X (z) =
∞∑
n=0

anz−n+
∞∑
n=0

anzn−1 =
1

1− az−1
+

1

1− az
−1 =

1− a2

1− a(z + z−1) + a2

with as ROC the intersection of the ROC of the causal and anti-causal
part:

ROC: |a| < |z | < 1

|a|
The ROC contains the unit circle. Hence

X (ω) = X (z = e jω) =
1− a2

1− a(e jω + e−jω) + a2
=

1− a2

1 + a2 − 2a cos(ω)

Note that x [n] is even and X (ω) is real-valued (ϕ(ω) = 0).

15 dtft 15 / 35



Relation to the continuous-time Fourier Transform

Consider a signal x(t) and sample it with period Ts ,

xs(t) =
∑
n

x(nTs)δ(t − nTs)

The (continous-time) Fourier transform is

Xs(Ω) = F{xs(t)} =
∑
n

x(nTs)F{δ(t − nTs)} =
∑

x(nTs)e
−jnΩTs

Set ω = ΩTs and x [n] = x(nTs). Then

Xs(Ω) = F{xs(t)} =
∑
n

x [n]e−jnω =: X (ω)

The definition of X (ω) (spectrum of a time series) is consistent to that
of Xs(Ω) (spectrum of a continuous-time signal).
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Inverse DTFT

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω =

∫ 1/2

−1/2
X (f )e j2πfndf (with ω = 2πf )

The integral runs over 1 period of the spectrum.

Proof

1

2π

∫ π

−π
X (ω)e jωndω =

1

2π

∫ π

−π

[ ∞∑
k=−∞

x [k]e−jωk

]
e jωndω

=
1

2π

∞∑
k=−∞

x [k]

[∫ π

−π
e jω(n−k)dω

]
=

1

2π

∞∑
k=−∞

x [k] · 2πδ[n − k] = x [n]
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Energy (Parseval)

Ex =
∞∑

n=−∞
|x [n]|2 =

1

2π

∫ π

−π
|X (ω)|2dω

Sx(ω) := |X (ω)|2 is called the energy spectrum (“energy spectral
density”: energy per radial)

Proof

Ex =
∑
n

|x [n]|2 =
∑
n

x [n]x∗[n]

=
∑
n

x [n]

[
1

2π

∫ π

−π
X ∗(ω)e−jωndω

]

=
1

2π

∫ π

−π
X ∗(ω)

[∑
n

x [n]e−jωn

]
dω

=
1

2π

∫ π

−π
|X (ω)|2dω

A similar property for power (see book) seems less practical...
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Extensions

A sufficient condition for the existence of the DTFT was that the signal
is absolutely summable. But also for some other signals we can define
the DTFT.

Extension to signals with finite energy

Signals with finite energy (x ∈ ℓ2) are not always absolutely summable
(the reverse does hold: ℓ1 ⊂ ℓ2). Due to Parseval, the spectrum has
equal energy: also finite. We can define a DTFT pair (signal/spectrum)
based on the Inverse DTFT (integral over a finite interval).

Example

Ideal low-pass filter:

G (ω) =

{
1, −ω0 ≤ ω ≤ ω0 , with copies every 2πk
0, elsewhere
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Ideal low-pass filter

g [n] =
1

2π

∫ π

−π
G (ω)e jωndω =

1

2π

∫ ω0

−ω0

e jωndω =
1

2π

[
e jωn

jn

]ω0

−ω0

=
sin(ω0n)

πn

g [n] has finite energy but is not absolutely summable (because 1
n

converges to 0 very slowly)
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Further extension to non-absolutely summable signals
According to the equation, the Inverse DTFT of 2πδ(ω − ω0) equals

1

2π

∫ π

−π
2πδ(ω − ω0) e

jωndω = e jω0n

Hence
e jω0n ⇔ 2πδ(ω − ω0)

This can be used to compute the DTFT of some signals which are not
absolutely summable nor have finite energy (with impulses in the
frequency domain), e.g., periodic signals.

x [n] = A (−∞ < n < ∞) (constant signal) is not absolutely
summable. The DTFT is

X (ω) = 2πAδ(ω) , −π ≤ ω < π

Outside this interval: periodic (period 2π), or
X (ω) = 2πA

∑
k δ(ω − 2πk).
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Cosine signals

The DTFT of x [n] = cos(ω0n + θ) = 1
2

[
e j(ω0n+θ) + e−j(ω0n+θ)

]
is

X (ω) = π
[
e jθδ(ω − ω0) + e−jθδ(ω + ω0)

]
, −π ≤ ω < π

Outside this interval: periodic (period 2π).
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Periodic signals

More in general, consider

x [n] =
∑
ℓ

Aℓ cos(ωℓn + θℓ)

⇔ X (ω) =
∑
ℓ

πAℓ

[
e jθℓδ(ω − ωℓ) + e−jθℓδ(ω + ωℓ)

]
for −π ≤ ω < π (periodic outside this interval).

A periodic signal x [n] has harmonically related frequencies: ωℓ = ℓω0,
with ω0 =

2π
N , where N is the period (in samples). We obtain a line

spectrum, just like with the Fourier Series.
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Unit step
The z-transform of a unit step u[n] is

1

1− z−1
, ROC: |z | > 1

The unit cicle is not in the ROC, thus the DTFT can only be defined in
generalized sense. (u[n] is not absolutely summable and does not have
finite energy.)

Define the discrete-time “sign” function:

sgn[n] =

{
1 , n ≥ 0
−1 , n < 0

Then

sgn[n] ⇔ 2

1− e−jω

u[n] =
1

2
+

1

2
sgn[n] ⇔ π

∑
k

δ(ω − 2πk) +
1

1− e−jω
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Unit step (cont’d)
Proof (indication)

Using the Fourier transform of
δ[n] = u[n]− u[n − 1] = 1

2 (sgn[n]− sgn[n − 1]):

1 = 1
2F{sgn[n]} − 1

2F{sgn[n − 1]} = 1
2F{sgn[n]} − 1

2e
−jωF{sgn[n]}

⇒ F{sgn[n]} = 2
1−e−jω for ω ̸= · · · , 0, 2π, 4π, · · ·

For ω = · · · , 0, 2π, 4π, · · · we consider the DC component of the
function, which equals 0 (in contrast to u[n], which motivates why we
looked at sng[n]).

F{u[n]} has impulses at these frequencies.

Compare this to the Fourier transform of a continuous-time step
function:

F{u(t)} = 1
jΩ + πδ(Ω).
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Shift in time

If y [n] = x [n − N] is a delay by N samples, then

Y (ω) =
∑
n

x [n − N]e−jωn = e−jωNX (ω)

The delay only affects the phase, which drops by −ωN.

Generally, a filter H(ω) that shows a linear phase term (−ωN) inserts
a delay of N samples.

This is called the phase delay: the delay that a sinusoid of frequency
ω would experience.

Also used is group delay: the derivative (slope) of the phase response.
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Shift in frequency

If
Y (ω) = X (ω − ω0)

is a frequency shift of X (ω) by ω0, then

y [n] = x [n] · e jω0n

y [n] equals x [n] modulated by a complex exponential function e jω0n.

Likewise:

x [n] · cos(ω0n) ⇔ 1

2
[X (ω − ω0) + X (ω + ω0)]

x [n] · sin(ω0n) ⇔ − j

2
[X (ω − ω0)− X (ω + ω0)]

The modulation shifts the spectrum of x [n] to frequency ω0.
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Example of modulation

x [n] = a|n| cos(ω0n) with a = 0.95, ω0 =
2π

10
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More generally: product of two signals
The DTFT of the product x [n]y [n] is∑

x [n]y [n]e−jωn =
∑[

1

2π

∫
X (θ)e jθndθ

]
y [n]e−jωn

=
1

2π

∫
X (θ)

[∑
y [n]e−j(ω−θ)n

]
dθ

=
1

2π

∫
X (θ)Y (ω − θ)dθ

Hence: a product in time becomes a convolution in frequency domain

x [n]y [n] ⇔ (X ∗ Y )(ω) :=
1

2π

∫ π

−π
X (θ)Y (ω − θ)dθ

Special case (modulation):
y [n] = x [n]e jω0n ⇔ Y (ω) = X (ω − ω0)

because e jω0n ⇔ 2πδ(ω − ω0).

15 dtft 29 / 35



Exercise [trial exam 2016]
Determine the DTFT X (ω) of

x [n] = (−1)nu[n]

For y [n] = u[n] we have seen that Y (ω) = 1
1−e−jω + π

∑
k δ(ω − 2πk).

We also saw that for a modulation:

(−1)ny [n] ↔ 1

2
[Y (ω − π) + Y (ω + π)] = Y (ω − π)

(due to periodicity of the spectrum with period 2π, both shifts exactly
coincide).

Together, we obtain

X (ω) =
1

1− e−j(ω−π)
+π

∑
k

δ(ω−π−2πk) =
1

1 + e−jω
+π

∑
k

δ(ω−π−2πk)
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Real-valued signals
For real-valued signals, x [n] = x∗[n]. Hence

X ∗(ω) = X (−ω)

and thus

|X (−ω)| = |X (ω)| : even in ω; ϕ(−ω) = −ϕ(ω) : odd in ω

It suffices to consider the spectrum on the interval 0 ≤ ω ≤ π.

Even real-valued signals

If moreover x [n] = x [−n], then X (ω) is real-valued:

X ∗(ω) =
∞∑

n=−∞
x∗[n]e jωn =

∞∑
n=−∞

x [−n]e jωn = X (ω)

The phase spectrum ϕ(ω) is 0 except for jumps of π due to sign
changes in X (ω).
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Summary of properties (cf Table in Chaparro)

ax [n] + by [n] ⇔ aX (ω) + bY (ω)
x [n − N] ⇔ e−jωNX (ω)
x [−n] ⇔ X (−ω)
x∗[n] ⇔ X ∗(−ω)

(x1 ∗ x2)[n] ⇔ X1(ω)X2(ω)

x [n]y [n] ⇔ (X ∗ Y )(ω) = 1
2π

∫ π

−π
X (θ)Y (ω − θ)dθ

e jω0n ⇔ 2πδ(ω − ω0)
e jω0nx [n] ⇔ X (ω − ω0)
x [n] cos(ω0n) ⇔ 1

2 [X (ω − ω0) + X (ω + ω0)]

Parseval:
∞∑

n=−∞
|x [n]|2 =

1

2π

∫ π

−π
|X (ω)|2dω
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EE3S1 preview: Discrete Fourier Transform (DFT)

Suppose x [n] has a finite length of N samples (support 0 ≤ n ≤ N − 1),
or x [n] is periodic with period N, and we consider only 1 period.

The DTFT X (ω) is a continuous function of ω, with −π ≤ ω < π.

We sample X (ω) with N samples:

X [k] := X (ωk) with ωk =
2π

N
k, k = 0, · · · ,N − 1 .

We obtain

X [k] =
N−1∑
n=0

x [n]e−j 2π
N
kn

X [k] is called the Discrete Fourier Transform
(DFT).

z-plane

ω1 =
2π
N

ω2 =
2π
N
2

ω0 = 0
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EE3S1 preview: Discrete Fourier Transform (DFT)

N samples in frequency suffice to recover x [n], 0 ≤ n ≤ N − 1
(outside this interval: periodic or zero)

Computationally efficient due to the Fast Fourier Transform (FFT)

The DFT and its properties are explored in the course lab, and fully
covered in EE3S1 Signal Processing.
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Relations

X (Ω)Xk

x̃(t)

∑
x[n − kN]

windowing

∑
x(t − kT )

interpolation

sampling

windowing (LPF)

reconstruction
(sinc-interpolation)

sampling

sampling

interpolation

discrete-time

windowing

(1 period)
periodiccontinuous-time

(1 period)
periodic

discrete-timecontinuous-time

freq.discrete freq.continuous freq.discrete
(line spectrum) periodic

freq.continuous

(1 period)

IDTFT DFT IDFTIFSFS FT IFTFT DTFT∑
X (Ω − kΩs )

x(t) x[n] x̃[n]

X [k]X (ω)

Generally:

periodic ⇔ discrete
short ⇔ long
product ⇔ convolution
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