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(3rd ed) Skip sections 10.5.3, 10.6, 10.7
(4th ed) Skip sections 8.5.3, 8.6, 8.7
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The Laplace transform for sampled sequences

Suppose that we have a sampled signal:

xs(t) =D x[nlo(t = nTs),  x[n]:=x(nTs)

The Laplace transform L{xs(t)} is

Xs(s) =Y _x[nL{s(t = nT)} = x[n]e ™" = > x[n]z ™"

where 7z := s,

m For s = jQ we obtain z = /%7 = /¥ with w = QT..

m More generally: s = o + jQ becomes z = 7 Tse/2Ts = e/,
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Aliasing
The mapping s — z = e°’s is not one-to-one.

For a given z = e/ we can take —7 < w < 7, this corresponds to

T .
—— < Q < —: the fundamental interval.
Ts Ts

Complex numbers s = j< with Q outside this interval are mapped onto
the same z. Left half-plane is mapped to the inside of the unit circle.

s-plane

T

X0

T
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The z-transform

From now on, we will work with z and apply this transform to time
series, even if there is no connection to continuous-time signals.

The (two-sided) z-transform of a time series x|[n] is defined as

X(z)=Z(x[n)) == Y x[n]z”",  ze€ROC

n=—o00
We also need to indicate the region of convergence (ROC).
For example:

X = [ 70717277475707"']

= X(z) = Z2+22' +3+4z71 45272
ROC: z € C\{0, 00}
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Exercise

Determine the z-transform (and ROC) of the exponential series:

x[n] = a" u[n] 012
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Exercise

Determine the z-transform (and ROC) of the exponential series:

x[n] = a" u[n] 012
oo
X(z) = Za”z_" =14az 422272+
n=0
1 oz
l—azl z-a

ROC: |az 1| < 1, hence |z| > a
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Delay

xin] & X(z)= nioox[n]z_”
xn—k & i:)x[n — Kz
= i x[n— K|z~ (=K 7=k
- ;:_;;(z)

A unit delay corresponds to multiplication by z .
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The z-transform

A few properties:

ax[n] + by[n] < aX(z)+ bY(2)

x[n — k| & z7kX(z2)

a"x|[n] & X(2) often a = &/“° (modulation)
x[—n] s Xz

x[n] = §[n] & X(z)=1 ROC: z e C

dl=ul] & X(@)=; _12_1 ROC: [z > 1

See Chaparro for tables and more properties.
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Region of convergence

The region of convergence (ROC) of the z-transform of a signal x[n]
contains those values of z for which the summation converges.

With z = re/¥ we find

ROC: |X(z)| = \Zx[n]z*"\ < Z Ix[n]| r~" < o0

m The ROC is the area where |X(z)| < oo, this depends on r but not
on w. Hence, the ROC is limited by circles.

m X(z) and the ROC together uniquely determine x|[n].

m Poles py are the locations where X(py) — oo: these are never in the
ROC.
Zeros zj are the locations where X(z,) = 0.
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Example

m Determine the poles and zeros of

2
X(z)=1+2z"1 = zr
z
Answer: 1 pole at z =0; 1 zero at z = —2.
= Same for .
142z~ 2
X(z) = +2z : z(z+2)
1+ 22 z24+1
Answer: poles at z = +j; 1 zero at z = —2, 1 zero at z = 0.

Theory says that for rational functions, the number of poles equals the
number of zeros (also taking into account those at z = 0 and z = o).

If X(z) is a rational function with real-valued coefficients, then the
complex poles and zeros appear in conjugated pairs: if p, is a complex
pole, then so is p;.
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ROC for a finite sequence

If x[n] = 0 outside an interval —oco < Ny < n < N; < o0, i.e.
X(z) = X[No]Z_NO e X[Nl]z_N1

then the sum has a finite number of terms, and the ROC is all of C,
except perpaps at z = 0 or |z| = oc:

0, if N\ >0, eg: X(z)=z+1+z71
oo, ifNo§0
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ROC of an infinite sequence

Split the sequence x[n] into the sum of a causal and an anti-causal
term, and use the linearity of the z-transform.

m The causal part X.(z) has ROC containing |z| = oo, therefore it is
|z| > Ry, the largest radius of the poles.

m The anti-causal part X,(z) has ROC containing z = 0, therefore it is
|z| < Ry, the smallest radius of the poles.

m Hence, the ROC of X(z) is the intersection: Ry < |z| < R». All poles

A B, .
[ N N

causal anti-causa not causa
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Example

m Causal signal: consider

saln] = (;)nu[n] e XE@=Y (;ﬂ)" - — 1521 2

n=0

ROC: |z > %

1/2

()
N/
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Example

m Anti-causal signal: consider

- (;) u[—n — 1]

xo[n] =
L1\ o -1 z
X(z) = = ), <2> Z_n:_z(zz)m+1:1—2z+1:z—1
n=—00 m=0 2
ROC: |z| < %

T

S

=N

The same X(z) corresponds to different x[n| depending on the ROC.
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Example
Compute the z-transform of the two-sided signal:

- <;)|

m For the causal part (n > 0) we find:

clil = (3) ol & xlo) - 3 (3) - -

1
n=0 2
ROC: |z| >
m For the anti-causal part (n < 0):
1\~" = (1)" 1

ROC: |z| < 2
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Example (cont'd)

m For x[n] we find
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Exponential signals

x[n] = a"u[n] = X(z) = . ROC: |z| > a
Pole at z = a, zero at z = 0.

a=0.5
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Harmonic (exponentially damped) signals

et e /Y -
x[n] = r"cos(won+ O)uln] = 7r”ef“’°” + N re @ y[n]
= [a"++"(a")" uln]
with a = re/*0 and v = %e both complex.
074 ’y*z z(z cos(#) — rcos(wp — 0))

(Z) zZ— Z— a* - (Z — rejwo)(z _ re—jwo) 3 ROC: |Z‘ > ’OZ

This is a second-order rational function with real-valued coefficients.

m Poles at z = re/*0 and z = re /0.
Special case: r = 1, now x[n] is an undamped (causal) sinusoid, with
its two poles on the unit circle.

r cos(wg — 0)

m Zeros at z =0 and z = cos(0)
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Harmonic signals

mr=1,w=16=0

m r =1, wp = 0 (one pole and zero cancel each other)
mr=05 w =1

=1l,w =1 r=1wy=0 =05,wp =1
1 Y o 1 , ®e0 00000000
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Double poles

For a causal x|[n]:

X(z) = ) _x[nz"
n=0
dX(2) o~ 2T O n
iz = gx[n] 5 =—z 1;)nx[n]z
Hence ix
nx[nluln] & @ -z diz)

Taking a derivative often leads to double poles.
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Example
Taking x[n] = a"u[n] so that X(z) = ﬁ, then

nauln] & ﬁ

Double pole at z = «, zero at z =0 and z = oc.

0.7
osf 0
/
05 5o
! \
a=0.5 04 /’ °
\
0.3 I \
I °
NG 02 | \
O 1 | Y
0.1 I A
I °
A N
oo 000 - ©e
-5 0 5 10
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The transfer function
Consider an LTI system S with impulse response h[n|. Earlier we found

ylnl = hln]  x[n] = i x[k]h[n — K]
Define :oo
H(z)= Y hinjz"
Then C

Y(z) = > Y x[klh[n—klz"

n=—00 k=—o0

= Z x[K] Z hln—k]z™"

k=—00 n=-—00
= > x[klz *H(z) = H(z)X(2)
k=—00
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Computing the convolution

Given x[n] =[1],2,0,---] and A[n] = [3],2,4,0,---].

Compute y[n] = x[n] * h[n] = > _ x[k]h[n — KI:

k=0
x[0]h[n] : 3 2 4 00
x[1Jhn—1]: 0 2.3 2.2 2.4 0
y[n] : 3 8 8 8 0

Alternatively, compute using Y(z) = X(z)H(z):

Y(z) = (1+2z7H(3+2z71+4272)
= (B42zt+4z2)+2z71(3+2z71 +4272)
= 3+(2+2-3)z7 1+ (4+2-2)z72+(2-4)z3
= 3+8z1+48z2+8273
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Lineair difference equations

The equivalent of a differential equation in discrete time is a linear
difference equation, e.g.

y[nl+aiy[n—1]+ - -+any[n—N] = box[n]+bix[n—1] = - - -+byx[n—M]
Take left and right the z-transform:

Y(z) (14 a1zt +- +anz V) =X(2) (bo + b1zt + - + byz™M)

A(z) B(z)

Therefore,

H(z) is a rational transfer function.
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Realizations

X[n] —=| D |—=y[n] = x[n — 1]

X(z) — |- Y— Y(2) = 271 X(2)

m The delay-element is a memory (clocked D-flip-flop): It shows at the
output what was the input at the previous clock cycle.

m Block schemes (“realizations”) consist of delays, multipliers and
adders.
In block schemes, D is usually written as z~*. Therefore, x[n] and
X(z) are often interchangeably used in block schemes.

m The impulse response h[n] follows for n = 1,2, - by inserting an
input signal x[n] = d[n] into the realization, and recursively
computing the signals in the scheme sample by sample (assuming
initial conditions of the delays are zero).
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Realizations

A rational transfer function H(z) corresponds to a realization using
delays, multipliers and adders.

Examples:

mH(z)=1+bz1! = h[n] = é[n] + bd[n — 1]

h[n]
x[n] - : > y[n] 1} ,
X(z) Y (z)
5]

012

Insert x[n] = d[n] to find h[n]. Insert X(z) =1 to find H(z).
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Realizations

z 1
z—a 1—az"
h[n] = a"u[n]

m H(z) =

i =1+azt+a%22+...,ROC: |z| > a

m Derivation of a realization:
Y(z) = H(z)X(z) = Y(z2)(1—az!)=X(z) =
Y(z) = X(z) + az71Y(2)

h[n]

x[n] D — y[n] —ﬂi&;
X(2) Y(z) 2
4]

012
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Exercise
Determine the transfer function of the following system:

-

qln+1 qn] Y
A @ | {05] =B 1
X(z) Q(2) Y(z)

11U Delft 14 z-transform




Exercise
Determine the transfer function of the following system:

-
qln+1 qln] Y
x[n] - 1 =0.5|—H > y[n]
X(2) ! Q) Y(2)
{ Y(z) = 2X(z)+0.5Q(z)
Q(z) = z7'Y(2)+z'X(2)
Y(z) = 2X(z) +0.5[z7 Y (z) + 271 X(2)]
(1-05z"1Y(z) = (2+05z1)X(2)
H(z) Y(z) 2+405z7Y 2z+05 ROC: |2 = 0.5

C X(z) 1-05z"1  z-05
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Causality

For a causal LTI system, we have h[n] =0, n < 0.

H(z)= > hinjz" = > hinz"
n=0

n—=—oo

Hence, an LTI system is causal iff the ROC of H(z) contains the outside
of a circle, including z = oc.
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Stability

o0
Earlier: A system is BIBO stable iff Z |h[n]| < oco.

n=—o00
Note:

[H(Z)| < > lhln]z=" = [hln]| [z~

On the unit circle, a BIBO stable system satisfies: |H(z)| < co: the unit
circle is contained in the ROC.

= An FIR system is always BIBO stable (finite sum).

® A causal and stable LTI system has H(z) with ROC containing the
unit circle and its outside: |z| > 1.
All poles are strictly inside the unit circle.
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Example

x[n] —=—D —=y[n]

o]

1
] 3205 = H(Z):W:1+O5zil+025272+

ROC: |z| > 0.5, causal and stable

1
B a=2 = H(z)= 71:1+22_1+4z_2+-~~

1-2z
ROC: |z| > 2, causal but non-stable
1 .
m H(z) = _ o 057 5, 0252012553

T 1-2z717  1-05z
ROC: |z| < 2, non-causal but stable.
This series (impulse response) does not correspond to the realization
(which is causal by construction).
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Conclusions

m A causal stable system has all poles within the unit circle. The ROC
contains at least the unit circle and the area outside it.

m Along with H(z), we also must indicate the ROC.

m Often the ROC is omitted. In that case, depending on the situation,
assume either

® the system is stable: the unit circle is within the ROC
® the system is causal: ROC contains infinity.
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Initial value and final value

If x[n] is causal, then

Initial value: x[0] = Iim X( )

Final value:  lim x[n] = lim(z—1)X(z) (if ROC D {|z| > 1}\{1}).

n—o00 z—1

Proof:
" ZILngOX( z) = I|m Zx[n]z*" = x[0]
n=0
L] zli_n>11(z -1)X(z) = Iim X[O]z + Z(X[n +1] — x[n])z™"

= x[0] + Z (x[n+ 1] — x[n])

- n';";oxlnl

The properties can be used to check the correctness of a computed x|n].
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Examples

m X(z)=1 = x[n]=4[n]
Initial value: lim 1 =1. Final value: lim(z—1)-1=0

Z—00 z—1
1
m X(z) = =i x[n] = u[n].
.. . 1
Initial value: ZI|_>r'r;o 1,1 1
-1
Final value: lim 271 = limz=1.
z—11—2z" z—1
Z—l
| | X(Z):m = X[n]:nu[n].
" . z1
Inltlal Value. le)n;@ m = O
(z—1)z71

Final value: [im =1

z—1 (1 — 2_1)2 z—11— Z_1 e
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