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Discrete-time signal
A discrete-time signal is a series of real or complex numbers:

n ∈ ZZ ⇒ x [n] ∈ ||R or |C

The sample period is not mentioned (but sometimes present implicitly).

Notation

as series: x = [· · · , 0, 0, 1 , 12 ,
1
4 ,

1
8 , · · · ], the square indicates x [0]

as explicit expression:

x [n] =

{
0 , n < 0
2−n , n ≥ 0

as implicit expression (recursion):

x [n] =


0 , n < 0
1 , n = 0
1
2x [n − 1] , n > 0
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Examples of signals

Unit pulse: δ[n] =

{
1 , n = 0
0 , elsewhere

Note that this is not a degenerated function.

Unit step: u[n] =

{
1 , n ≥ 0
0 , n < 0

1

0 1 2

1

0 1 2

· · ·

We can also write:

δ[n] = u[n]− u[n − 1] , (discrete differential)

u[n] =
∞∑
k=0

δ[n − k] =
n∑

m=−∞
δ[m] , (discrete integral)

x [n] =
∞∑

k=−∞
x [k]δ[n − k]
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Examples of signals

Exponential series: x [n] = Aαn u[n]

Complex exponential series: x [n] = A e jωn.

1

0 1 2

· · ·

x [n] is periodic with period N if x [n] = x [n + N] ∀n.
This is only possible if ω = 2π

N k , for k ∈ ZZ (else ”quasi-periodic”).

And if N can be divided by k , the actual period is smaller than N.

If ω2 = ω1 + 2π, then x2[n] = e jω2n is equal to x1[n] = e jω1n.

Therefore, it is sufficient to take ω ∈ ⟨−π, π].

The frequency response of a digital system is periodic!

Is the sum of two periodic signals also periodic? Which period?
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Example: quasi-periodic signal

x [n] = cos(ω0n + θ0) with ω0 = 1
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ω
0
 = 1

If ω0 ̸= 2π
N k for integers N and k, then the signal is not periodic. But

because every real number can be approximated by a ratio k
N , such a

signal will be approximately periodic.

13 lti 6 / 32



Sum of two periodic signals
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x1[n] = sin(ω1n + θ1) with ω1 =
π
4 : period is T1 = 2π/ω1 = 8

x2[n] = sin(ω2n + θ2) with ω2 =
π
5 : period is T2 = 2π/ω2 = 10

x1[n] + x2[n] has period 40 samples: least common multiple of T1

and T2.
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Energy and signal space

The energy in a discrete-time signal x [n] is defined as

E =
∞∑

n=−∞
|x [n]|2

The set of discrete-time signals for which E < ∞ is called ℓ2:

ℓ2 = {x :
∞∑

n=−∞
|x [n]|2 < ∞}

This is a “Hilbert space”, with pleasant properties

Similar:

ℓ1 = {x :
∞∑

n=−∞
|x [n]| < ∞} absolutely summable

ℓ∞ = {x : max
n

|x [n]| < ∞} absolutely bounded
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Example

x [n] = (12)
nu[n]

E =
∞∑
n=0

(
1

2
)2n = 1 +

1

4
+ (

1

4
)2 + · · · = 1

1− 1
4

=
4

3

1

0 1 2

· · ·
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Power
Not all signals have finite energy (e.g. x [n] = 1 ∀n).
The power of a signal x [n] is defined as

P = lim
N→∞

1

2N + 1

N∑
n=−N

|x [n]|2

Example

Determine the power of x [n] = cos(ω0n) with ω0 ̸= 0 mod π.

P = lim
N→∞

1

2N + 1

N∑
n=−N

cos2(ω0n)

= lim
N→∞

1

2N + 1

N∑
n=−N

1

2
[1 + cos(2ω0n)] = lim

N→∞

1

2N + 1

N∑
n=−N

1

2
=

1

2

because
∑

cos(2ω0n) → 0 als ω0 ̸= 0 mod π.
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Power

x [n] = cos(ω0n) with ω0 =
π

4
−30 −20 −10 0 10 20 30

−1

0

1
x[n]

−30 −20 −10 0 10 20 30
0

0.5

1
x

2
[n]

From the plot of x2[n] we see that the power of x [n] is equal to P = 1
2 :

the “average” of x2[n].
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Systems

A system S is a mapping of the signal space ℓ onto itself:

x ∈ ℓ → y = S{x} ∈ ℓ

Generally, y [n] at some moment n depends on x [k] for all k ∈ ZZ

Elementary systems

Time reversal: y [n] = (Rx)[n] := x [−n]

This can be used to split a signal into an even and odd part:

x [n] = xe [n]+xo [n] with xe [n] =
1

2
(x [n]+x [−n]) , xo [n] =

1

2
(x [n]−x [−n])

Note: the energy of x [n] is the sum of energies of xe [n] and xo [n].
(Does this generally hold for the sum of two signals?)
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Elementary systems

Time delay over k samples:

y [n] = (Dkx)[n] := x [n − k] D x [n − 1]x [n]

Memoryless system:

y [n] is only a function of x [n]

(also called a static system, in
contrast to a dynamic system)

αx [n]x [n]
α

Causal system:

y [n] only depends on x [k] for k ≤ n.
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Linear time-invariant system (LTI)

Linear: S{ax1 + bx2} = aS{x1}+ bS{x2}: superposition

Time invariant: S{Dk{x}} = Dk{S{x}}
Or: S{x [n]} = y [n] ⇒ S{x [n − k]} = y [n − k].

S y [n]x [n]

S y [n − 1]⇒ x [n − 1]
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Fundamental property

Suppose that S is an LTI system, and y [n] = S{x [n]} for an arbitrary
signal x [n]. Then

y [n] =
∞∑

k=−∞
x [k]h[n − k] , in which h[n] = S{δ[n]}

h[n] is the impulse response of the system. Notation: y [n] = (x ∗ h)[n].

h[n] y [n]x [n]
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Proof

Earlier, we saw x [n] =
∞∑

k=−∞
x [k]δ[n − k]

Apply S and use the LTI properties:

y [n] = S{x [n]} = S

{ ∞∑
k=−∞

x [k]δ[n − k]

}

=
∞∑

k=−∞
x [k]S{δ[n − k]}

=
∞∑

k=−∞
x [k]h[n − k]
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Exercise

The unit-step response of a discrete-time LTI system is

s[n] = 2[(0.5)n − 1]u[n]

Find the impulse response h[n].

For an LTI system, the response to δ[n] = u[n]− u[n − 1] is

h[n] = s[n]− s[n − 1]

= [2(0.5)n − 2]u[n] − [2(0.5)n−1 − 2]u[n − 1]

= 0 · δ[n] + [2(0.5)n − 2]u[n − 1] − [2(0.5)n−1 − 2]u[n − 1]

= [(0.5)n−1 − 2(0.5)n−1]u[n − 1]

= −(0.5)n−1u[n − 1]
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Discrete convolution

(x ∗ y)[n] =
∞∑

k=−∞
x [k]y [n − k]

[The notation x [n] ∗ y [n] is common, but not quite right.]

Properties (cf. multiplication):

linear (distributive):
h[n] ∗ (α1x1[n] + α2x2[n]) = α1 h[n] ∗ x1[n] + α2 h[n] ∗ x2[n]

commutative: x ∗ y = y ∗ x

associative: (x ∗ y) ∗ z = x ∗ (y ∗ z)

δ[n] is the identity element: x ∗ δ = x
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Computing the convolution (1)

y [n] =
∞∑

k=−∞
x [k]h[n−k] = · · ·+x [0]h[n]+x [1]h[n−1]+x [2]h[n−2]+· · ·

1

x[1]h[n − 1] (k = 1)

h[n]

· · ·

h[n − 1]

1

210 210

x[k]
1

x[0]h[n]
1

x[2]h[n − 2] (k = 2)

⇒

y [n]

· · ·
−2−10 1 2 3

h[n − 2] ∑
0 1 2 3

1

0 1 2 3

1

0 1 2 3

1

· · ·

2

· · ·

10

210
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Computing the convolution (2): short impulse responses

Because x ∗ h = h ∗ x , also y [n] =
∑∞

k=−∞ h[k]x [n − k]

h[k]
1

210

h[0]x[n]

y [n] = h[0]x[n] + h[1]x[n − 1]

+

210

h[1]x[n − 1]

210

210

210

x[n]

210

x[n − 1]
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Exercise [exam January 2023]

Given the signals

x [n] = [· · · , 0, 0 , 1, 2, 3, 4, 0, · · · ]
h[n] = [· · · , 0, 2 , −1, 0, 0, · · · ] .

Determine y [n] = x [n] ∗ h[n].

Compute y [n] = x [n] ∗ h[n] =
∞∑
k=0

h[k]x [n − k]:

h[0]x [n] : 0 2 4 6 8 0 0 0 · · ·
h[1]x [n − 1] : 0 0 −1 −2 −3 −4 0 0 · · ·
y [n] : 0 2 3 4 5 −4 0 0 · · ·

13 lti 21 / 32



Exercise [exam January 2023]

Given the signals

x [n] = [· · · , 0, 0 , 1, 2, 3, 4, 0, · · · ]
h[n] = [· · · , 0, 2 , −1, 0, 0, · · · ] .

Determine y [n] = x [n] ∗ h[n].

Compute y [n] = x [n] ∗ h[n] =
∞∑
k=0

h[k]x [n − k]:

h[0]x [n] : 0 2 4 6 8 0 0 0 · · ·
h[1]x [n − 1] : 0 0 −1 −2 −3 −4 0 0 · · ·
y [n] : 0 2 3 4 5 −4 0 0 · · ·

13 lti 21 / 32



Properties of LTI systems

An LTI system is causal iff h[n] = 0 for n < 0

Proof

y [n] = · · ·+h[−2]x [n+2]+h[−1]x [n+1]+h[0]x [n]+h[1]x [n− 1]+ · · ·

Note that y [n] should not depend on x [n + 1], x [n + 2], · · · . Therefore,
we need h[−1] = 0, h[−2] = 0, · · · .
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Properties of LTI systems

Description in matrix-vector notation (strictly speaking only for
S : ℓ2 → ℓ2)

...
y [−2]
y [−1]

y[0]

y [1]
y [2]
...


=



. . .

· · · h[0] 0
· · · h[1] h[0]

· · · h[2] h[1] h[0]

· · · h[3] h[2] h[1] h[0]
· · · h[4] h[3] h[2] h[1] h[0]

...
...

...
...

. . .





...
x [−2]
x [−1]

x [0]

x [1]
x [2]
...


linear ↔ matrix-vector; causal ↔ lower triangular

time-invariant ↔ constant along diagonals (“Toeplitz”)
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Stability

A system S : x → y is called “BIBO” stable (bounded-input
bounded-output) if for every x : |x [n]| ≤ Mx < ∞ there is an My < ∞
such that y : |y [n]| ≤ My .

Equivalently: S : ℓ∞ → ℓ∞
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Stability
An LTI system is BIBO stable iff h[n] is absolutely summable:∑

|h[n]| < ∞
Equivalently: h ∈ ℓ1

Proof

Sufficient:

|y [n]| = |
∞∑
−∞

h[k]x [n − k]| ≤
∞∑
−∞

|h[k]| |x [n − k]| ≤ Mx

∞∑
−∞

|h[k]|

Necessary: Suppose
∑∞

−∞ |h[k]| = ∞. Consider x [n] = h∗[−n]
|h[−n]| . Then

Mx = 1 < ∞ while

y [0] =
∞∑
−∞

h[k]x [0− k] =
∞∑
−∞

h[k]
h∗[k]

|h[k]|
=

∞∑
−∞

|h[k]| = ∞
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Example

h[n] = αnu[n]

This system is causal. Is it stable?

If |α| < 1, then

∞∑
0

|h[n]| =
∞∑
0

|α|n =
1

1− |α|
< ∞ : stable

If |α| ≥ 1, then the sum diverges: not stable.
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FIR and IIR

An LTI system is FIR (Finite Impulse Response) if

h[n] = 0 for n < N1 and n > N2

and else it is called IIR (Infinite Impulse Response).

Examples

h[n] = u[n]− u[n − 3] =

{
1, n = 0, 1, 2
0, elsewhere

is FIR.

h[n] = αnu[n] is IIR.

FIR systems are automatically stable (always summable)
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Interconnections of LTI systems

Cascade connection: y = (x ∗ h1) ∗ h2 ≡ (x ∗ h2) ∗ h1
Parallel connection: y = x ∗ h1 + x ∗ h2 = x ∗ (h1 + h2)

h1 ∗ h2

x y x= yh1 + h2

h1

h2

h1 h2 yx h2 h1 yx=
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Elementary discrete-time building blocks

x [n] z−1 y [n] = x [n − 1]

x1[n] y [n] = x1[n] + x2[n]

x2[n]

y [n] = ax [n]

y [n] = x1[n] · x2[n]
x2[n]

x1[n]

x [n] a

Here, the notation “z−1” is purely formal (corresponds to the delay
operator D)
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LTI system described by a Linear Difference Equation

N∑
k=0

aky [n − k] =
M∑
k=0

bkx [n − k] , n = · · · ,−1, 0, 1, · · ·

This is an N-th order system (assuming a0 ̸= 0 and aN ̸= 0).

There are N initial conditions (if the recursion starts at n = 0).

The implementation is recursive:

y [n] = − 1
a0

∑N
k=1 aky [n − k] + 1

a0

∑M
k=0 bkx [n − k]

Example: first-order system

y [n] + ay [n − 1] = bx [n]
⇒ y [n] = bx [n]− ay [n − 1]

z−1

bx[n] y [n]

y [n − 1]

−

a

13 lti 30 / 32



Example: accumulator

y [n] =
n∑

k=−∞
x [k]

=
n−1∑

k=−∞
x [k] + x [n]

= y [n − 1] + x [n]

x [n]

z−1

y [n]

y [n − 1]

This implementation requires only one adder and memory element
(=delay). The delay remembers everything from the past that is needed
for the future (=the state).

Is this a stable system?
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Example: 1st order system

y [n]− 1

4
y [n − 1] =

1

2
x [n] +

1

2
x [n − 1]

1
2z−1

y [n]x [n]

z−1

y [n] = 1
4y [n − 1] + 1

2x [n] +
1
2x [n − 1]

1
4

1
2

We will see later that there also exists a realization that uses only 1
delay element.
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