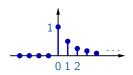
EE2S1 Signals and Systems (3rd ed) Ch. 9 (4th ed) Ch. 7 Discrete-time signals - LTI systems

Alle-Jan van der Veen

7 October 2024

Contents

- time series
- periodic signals
- energy and power



- LTI systems: impulse response and convolution
- computing the convolution
- BIBO stability
- Lineair Difference Equation

$$x[n] \longrightarrow h[n] \longrightarrow y[n]$$

Discrete-time signal

A discrete-time signal is a series of real or complex numbers:

 $n \in \mathbb{Z} \quad \Rightarrow \quad x[n] \in \mathbb{R} \text{ or } \mathbb{C}$

The sample period is not mentioned (but sometimes present implicitly). Notation

• as series: $x = [\cdots, 0, 0, 1], \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots]$, the square indicates x[0]

as explicit expression:

$$\mathbf{x}[n] = \begin{cases} 0, & n < 0\\ 2^{-n}, & n \ge 0 \end{cases}$$

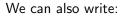
as implicit expression (recursion):

$$x[n] = \begin{cases} 0, & n < 0\\ 1, & n = 0\\ \frac{1}{2}x[n-1], & n > 0 \end{cases}$$

Examples of signals

• Unit pulse: $\delta[n] = \begin{cases} 1, & n = 0\\ 0, & \text{elsewhere} \end{cases}$ Note that this is not a degenerated function.

• Unit step:
$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$



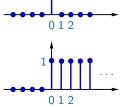
$$\delta[n] = u[n] - u[n-1],$$

$$u[n] = \sum_{k=0}^{\infty} \delta[n-k] = \sum_{m=-\infty}^{n} \delta[m],$$

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

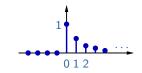
(discrete differential)

(discrete integral)



Examples of signals

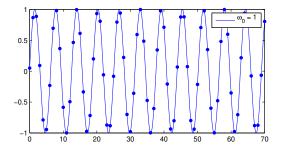
- Exponential series: $x[n] = A \alpha^n u[n]$
- Complex exponential series: $x[n] = A e^{j\omega n}$.



- x[n] is periodic with period N if $x[n] = x[n + N] \forall n$. This is only possible if $\omega = \frac{2\pi}{N}k$, for $k \in \mathbb{Z}$ (else "quasi-periodic"). And if N can be divided by k, the actual period is smaller than N.
- If ω₂ = ω₁ + 2π, then x₂[n] = e^{jω₂n} is equal to x₁[n] = e^{jω₁n}. Therefore, it is sufficient to take ω ∈ ⟨-π, π]. The frequency response of a digital system is periodic!
- Is the sum of two periodic signals also periodic? Which period?

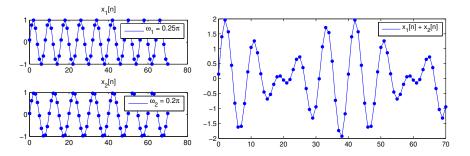
Example: quasi-periodic signal

$$x[n] = \cos(\omega_0 n + \theta_0)$$
 with $\omega_0 = 1$



If $\omega_0 \neq \frac{2\pi}{N}k$ for integers N and k, then the signal is not periodic. But because every real number can be approximated by a ratio $\frac{k}{N}$, such a signal will be approximately periodic.

Sum of two periodic signals



- $x_1[n] = \sin(\omega_1 n + \theta_1)$ with $\omega_1 = \frac{\pi}{4}$: period is $T_1 = 2\pi/\omega_1 = 8$
- $x_2[n] = \sin(\omega_2 n + \theta_2)$ with $\omega_2 = \frac{\pi}{5}$: period is $T_2 = 2\pi/\omega_2 = 10$
- $x_1[n] + x_2[n]$ has period 40 samples: least common multiple of T_1 and T_2 .

Energy and signal space

• The energy in a discrete-time signal x[n] is defined as

$$E = \sum_{n=-\infty}^{\infty} |x[n]|^2$$

• The set of discrete-time signals for which $E < \infty$ is called ℓ_2 :

$$\ell_2 = \{x : \sum_{n = -\infty}^{\infty} |x[n]|^2 < \infty\}$$

This is a "Hilbert space", with pleasant properties

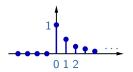
Similar:

$$\ell_1 = \{x : \sum_{n = -\infty}^{\infty} |x[n]| < \infty\}$$
absolutely summable
$$\ell_{\infty} = \{x : \max_{n} |x[n]| < \infty\}$$
absolutely bounded

Example

 $x[n] = (\frac{1}{2})^n u[n]$

$$E = \sum_{n=0}^{\infty} (\frac{1}{2})^{2n} = 1 + \frac{1}{4} + (\frac{1}{4})^2 + \dots = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}$$



Power

Not all signals have finite energy (e.g. $x[n] = 1 \forall n$). The power of a signal x[n] is defined as

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

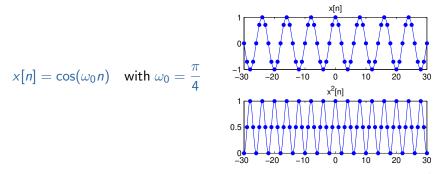
Example

• Determine the power of $x[n] = \cos(\omega_0 n)$ with $\omega_0 \neq 0 \mod \pi$.

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \cos^{2}(\omega_{0}n)$$
$$= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \frac{1}{2} [1 + \cos(2\omega_{0}n)] = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \frac{1}{2} = \frac{1}{2}$$

because $\sum \cos(2\omega_0 n) \to 0$ als $\omega_0 \neq 0 \mod \pi$.

Power



From the plot of $x^2[n]$ we see that the power of x[n] is equal to $P = \frac{1}{2}$: the "average" of $x^2[n]$.

Systems

A system $\mathcal S$ is a mapping of the signal space ℓ onto itself:

 $x \in \ell \quad \rightarrow \quad y = \mathcal{S}\{x\} \in \ell$

Generally, y[n] at some moment n depends on x[k] for all $k \in \mathbb{Z}$

Elementary systems

■ Time reversal: y[n] = (Rx)[n] := x[-n] This can be used to split a signal into an even and odd part:

$$x[n] = x_e[n] + x_o[n]$$
 with $x_e[n] = \frac{1}{2}(x[n] + x[-n]), x_o[n] = \frac{1}{2}(x[n] - x[-n])$

Note: the energy of x[n] is the sum of energies of $x_e[n]$ and $x_o[n]$. (Does this generally hold for the sum of two signals?)

Elementary systems

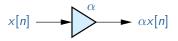
■ Time delay over *k* samples:

 $y[n] = (\mathcal{D}_k x)[n] := x[n-k]$

Memoryless system:
 y[n] is only a function of x[n]
 (also called a static system, in contrast to a dynamic system)

Causal system:

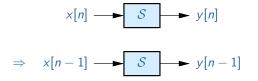
y[n] only depends on x[k] for $k \leq n$.



Linear time-invariant system (LTI)

• Linear: $S{ax_1 + bx_2} = aS{x_1} + bS{x_2}$: superposition

Time invariant: $S{D_k{x}} = D_k{S{x}}$ Or: $S{x[n]} = y[n] \Rightarrow S{x[n-k]} = y[n-k].$



Fundamental property

Suppose that S is an LTI system, and $y[n] = S\{x[n]\}\$ for an arbitrary signal x[n]. Then

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k],$$
 in which $h[n] = S\{\delta[n]\}$

h[n] is the impulse response of the system. Notation: y[n] = (x * h)[n].

$$x[n] \longrightarrow h[n] \longrightarrow y[n]$$

Proof

Earlier, we saw
$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

Apply \mathcal{S} and use the LTI properties:

$$y[n] = S\{x[n]\} = S\left\{\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\right\}$$
$$= \sum_{k=-\infty}^{\infty} x[k]S\{\delta[n-k]\}$$
$$= \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Exercise

The unit-step response of a discrete-time LTI system is

 $s[n] = 2[(0.5)^n - 1]u[n]$

Find the impulse response h[n].

Exercise

The unit-step response of a discrete-time LTI system is

 $s[n] = 2[(0.5)^n - 1]u[n]$

Find the impulse response h[n].

For an LTI system, the response to $\delta[n] = u[n] - u[n-1]$ is

$$h[n] = s[n] - s[n-1]$$

= $[2(0.5)^n - 2]u[n] - [2(0.5)^{n-1} - 2]u[n-1]$
= $0 \cdot \delta[n] + [2(0.5)^n - 2]u[n-1] - [2(0.5)^{n-1} - 2]u[n-1]$
= $[(0.5)^{n-1} - 2(0.5)^{n-1}]u[n-1]$
= $-(0.5)^{n-1}u[n-1]$

Discrete convolution

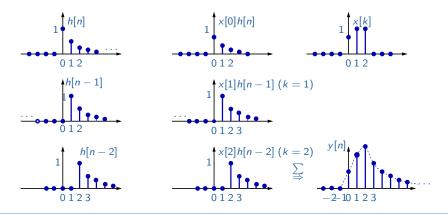
$$(x * y)[n] = \sum_{k=-\infty}^{\infty} x[k]y[n-k]$$

[The notation x[n] * y[n] is common, but not quite right.]

Properties (cf. multiplication):

- linear (distributive): $h[n] * (\alpha_1 x_1[n] + \alpha_2 x_2[n]) = \alpha_1 h[n] * x_1[n] + \alpha_2 h[n] * x_2[n]$
- commutative: x * y = y * x
- associative: (x * y) * z = x * (y * z)
- $\delta[n]$ is the identity element: $x * \delta = x$

Computing the convolution (1)



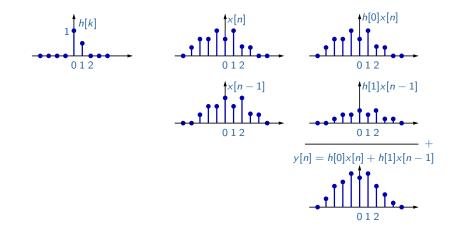
TUDelft

19 / 32

Computing the convolution (2): short impulse responses

Because x * h = h * x, also $y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$

ŤUDelft



Exercise [exam January 2023]

Given the signals

$$x[n] = [\cdots, 0, 0], 1, 2, 3, 4, 0, \cdots] h[n] = [\cdots, 0, 2], -1, 0, 0, \cdots].$$

Determine y[n] = x[n] * h[n].

Exercise [exam January 2023]

Given the signals

Determine y[n] = x[n] * h[n].

Properties of LTI systems

An LTI system is **causal** iff h[n] = 0 for n < 0

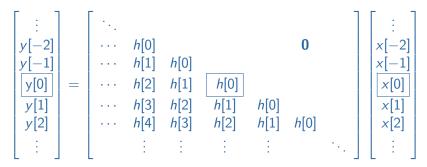
Proof

 $y[n] = \dots + h[-2]x[n+2] + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \dots$

Note that y[n] should not depend on $x[n+1], x[n+2], \cdots$. Therefore, we need $h[-1] = 0, h[-2] = 0, \cdots$.

Properties of LTI systems

Description in matrix-vector notation (strictly speaking only for $\mathcal{S}:\ell_2\to\ell_2)$



linear \leftrightarrow matrix-vector; causal \leftrightarrow lower triangular time-invariant \leftrightarrow constant along diagonals ("Toeplitz")

Stability

A system $S : x \to y$ is called "BIBO" stable (bounded-input bounded-output) if for every $x : |x[n]| \le M_x < \infty$ there is an $M_y < \infty$ such that $y : |y[n]| \le M_y$.

Equivalently: $\mathcal{S}: \ell_{\infty} \rightarrow \ell_{\infty}$

Stability

An LTI system is BIBO stable iff h[n] is absolutely summable: $\sum |h[n]| < \infty$

Equivalently: $h \in \ell_1$

Proof

Sufficient:

$$|y[n]| = |\sum_{-\infty}^{\infty} h[k]x[n-k]| \le \sum_{-\infty}^{\infty} |h[k]| |x[n-k]| \le M_x \sum_{-\infty}^{\infty} |h[k]|$$

• Necessary: Suppose $\sum_{-\infty}^{\infty} |h[k]| = \infty$. Consider $x[n] = \frac{h^*[-n]}{|h[-n]|}$. Then

$$M_{x} = 1 < \infty \quad \text{while}$$

$$y[0] = \sum_{-\infty}^{\infty} h[k]x[0-k] = \sum_{-\infty}^{\infty} h[k]\frac{h^{*}[k]}{|h[k]|} = \sum_{-\infty}^{\infty} |h[k]| = \infty$$

Example

 $h[n] = \alpha^n u[n]$

This system is causal. Is it stable?

• If $|\alpha| < 1$, then

$$\sum_{0}^{\infty} |h[n]| = \sum_{0}^{\infty} |\alpha|^n = \frac{1}{1-|\alpha|} < \infty \qquad : \text{ stable}$$

• If $|\alpha| \ge 1$, then the sum diverges: not stable.

FIR and IIR

An LTI system is FIR (Finite Impulse Response) if

h[n] = 0 for $n < N_1$ and $n > N_2$

and else it is called **IIR** (Infinite Impulse Response).

Examples

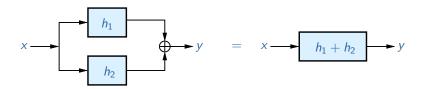
•
$$h[n] = u[n] - u[n-3] = \begin{cases} 1, & n = 0, 1, 2\\ 0, & \text{elsewhere} \end{cases}$$
 is FIR.
• $h[n] = \alpha^n u[n]$ is IIR.

FIR systems are automatically stable (always summable)

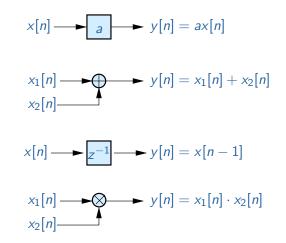
Interconnections of LTI systems

• Cascade connection: $y = (x * h_1) * h_2 \equiv (x * h_2) * h_1$

Parallel connection: $y = x * h_1 + x * h_2 = x * (h_1 + h_2)$



Elementary discrete-time building blocks



Here, the notation " z^{-1} " is purely formal (corresponds to the delay operator D)

TUDelft

LTI system described by a Linear Difference Equation

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k], \qquad n = \cdots, -1, 0, 1, \cdots$$

This is an *N*-th order system (assuming $a_0 \neq 0$ and $a_N \neq 0$). There are *N* initial conditions (if the recursion starts at n = 0). The implementation is recursive:

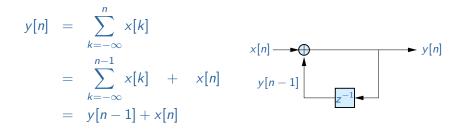
$$y[n] = -\frac{1}{a_0} \sum_{k=1}^{N} a_k y[n-k] + \frac{1}{a_0} \sum_{k=0}^{M} b_k x[n-k]$$

Example: first-order system

$$y[n] + ay[n-1] = bx[n]$$

$$\Rightarrow y[n] = bx[n] - ay[n-1]$$

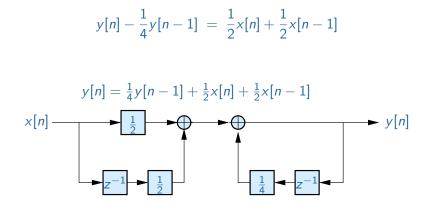
Example: accumulator



This implementation requires only one adder and memory element (=delay). The delay remembers everything from the past that is needed for the future (=the state).

Is this a stable system?

Example: 1st order system



We will see later that there also exists a realization that uses only 1 delay element.

