EE2S1 Signals and Systems

(3rd ed) Ch. 9

(4th ed) Ch. 7 } Discrete-time signals - LTI systems
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Discrete-time signal
A discrete-time signal is a series of real or complex numbers:

neZ = x[n]€R orC

The sample period is not mentioned (but sometimes present implicitly).

Notation
m as series: x = [--- ,0,0,, %, %, %, -+ -], the square indicates x|[0]
m as explicit expression:

x[n] = 0, n<0

12", n>0
m as implicit expression (recursion):
0, n<0
x[n]=1¢ 1, n=

%x[n—l], n>0
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Examples of signals

1, n=20

0 s elsewhere —o-o-0-0'0000—

m Unit pulse: §[n] = {

Note that this is not a degenerated function.

>
m Unit step: u[n]:{(l)’ Z;g 1"{111”.
—0-0-0-0

012
We can also write:
d[n] = u[n] — u[n —1], (discrete differential)
o0 n
uln] = Zé[n — k] = Z o[m], (discrete integral)
k=0 m=—00
x[n]= > x[k]d[n— K]
k=—00
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Examples of signals

m Exponential series: x[n] = Aa" u[n]

m Complex exponential series: x[n] = Ae/“n,

m x[n] is periodic with period N if x[n] = x[n + N| ¥n.
This is only possible if w = %k, for k € Z (else "quasi-periodic™).
And if N can be divided by k, the actual period is smaller than V.

m If wo = wi + 27, then xo[n] = /2" is equal to x;[n] = e/“1".
Therefore, it is sufficient to take w € (—m, 7].
The frequency response of a digital system is periodic!

m Is the sum of two periodic signals also periodic? Which period?
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Example: quasi-periodic signal

x[n] = cos(won + o) with wy =1

If wo # zﬁk for integers IV and k, then the signal is not periodic. But
because every real number can be approximated by a ratio % such a
signal will be approximately periodic.
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Sum of two periodic signals

x[n]
1 2 T T
w 0 251 x,[n] +x,[n]
1.5 14 al
0
1
-1 0.5
0 80
ol
2[h]
1 S S 051
1t
0
151
-1 2 L L L . . .
0 20 40 60 80 0 10 20 30 40 50 60 70

m xi[n] = sin(win+ 61) with wy = 7 period is T1 = 27 /w; =8

[GIE R NE

m xo[n| = sin(wan + 62) with wp, = T: period is Tp = 27 /wy = 10

® x1[n] + x2[n] has period 40 samples: least common multiple of T;
and To.
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Energy and signal space

m The energy in a discrete-time signal x[n] is defined as

[e.9]

E= Y P

n=—00
m The set of discrete-time signals for which £ < oo is called /5:

b={x: > |x[n]]* < oo}

n=—oo

This is a “Hilbert space”, with pleasant properties

m Similar:

0 ={x: Z |x[n]| < oo} absolutely summable

n=—oo

loo = {x: max|x[n]| < oo} absolutely bounded
n
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Example

x[n] = (%)”u[n]

E:i(1)2":1+1+(*)2+'”:
n*O2 ! ' -
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Power
Not all signals have finite energy (e.g. x[n] = 1 Vn).

The power of a signal x[n| is defined as

N
1 2
P=m N1 Z X[l

Example

m Determine the power of x[n] = cos(wgn) with wg # 0 mod .

1
P = lim
N 2N + 1 Z cos® (won)

N
) 1
= /\/ITOO2N+1HZN[1+COS(2UJ0”)]_ lim 2N+1 Z sz

because ) cos(2wpn) — 0 als wy # 0 mod 7.
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Power

x[n]

x[n] = cos(wgn) with wg = % -3 -20 -0 0 10 20 30

From the plot of x?[n] we see that the power of x[n] is equal to P = 1:
the “average” of x?[n].
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Systems
A system S is a mapping of the signal space ¢ onto itself:
xel — y=8{x}et
Generally, y[n] at some moment n depends on x[k] for all k € Z
Elementary systems
m Time reversal: y[n] = (Rx)[n] := x[—n]

This can be used to split a signal into an even and odd part:

xln] = xelnl txoln] with xeln] = 2 (i x[-]), xolo] = 5 (xln]—x[-n]

Note: the energy of x[n] is the sum of energies of x.[n]| and x,[n].
(Does this generally hold for the sum of two signals?)
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Elementary systems

m Time delay over k samples:

y[n] = (Dkx)[n] := x[n — k] x[n] — D —= x[n—1]

m Memoryless system:
y[n] is only a function of x[n] <
. . x[n] ax|n]
(also called a static system, in
contrast to a dynamic system)

m Causal system:
y[n] only depends on x[k] for k < n.
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Linear time-invariant system (LTI)

m Linear: S{ax; + bxo} = aS{x1} + bS{x>}: superposition

m Time invariant: S{Dr{x}} = Di{S{x}}
Or: S{x[n]} =y[n] = S{x[n— K]} =y[n—K].

x[n] —»= S = y[n]

= x[n=1] —» § | y[n—1]
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Fundamental property

Suppose that S is an LTI system, and y|[n] = S{x|[n]} for an arbitrary
signal x[n|. Then

[e.9]

ylnl= > x[klh[n— K], inwhich h[n] = S{5[n]}

k=—00

h[n| is the impulse response of the system. Notation: y[n] = (x * h)[n].

x[n] —={ hln] [—= y[n]
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Proof

Earlier, we saw x[n] = Z x[k]o[n — K]
k=—00

Apply S and use the LTI properties:

ylnl = S{x[nl} = S{ > x[Klo[n - k]}
k=—00
= ) x[KIS{s[n— K]}
k=—0oc0
= Y x[k]h[n - K]
k=—0c0
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Exercise

The unit-step response of a discrete-time LTI system is
s[n] = 2[(0.5)" — 1]u[n]

Find the impulse response h[n].

3
TUDelft



Exercise

The unit-step response of a discrete-time LTI system is
s[n] = 2[(0.5)" — 1]u[n]

Find the impulse response h[n].

For an LTI system, the response to d[n] = u[n] — u[n — 1] is

hln] = s[n] —s[n—1]

[2(0.5)" — 2Ju[n] — [2(0.5)""! — 2Ju[n — 1]

0-6[n + [2(0.5)" — 2Ju[n — 1] — [2(0.5)""* — 2Ju[n — 1]
[(0.5)™ ! —2(0.5)™  ]u[n — 1]

= —(0.5)" u[n—1]
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Discrete convolution

o0

Ccxy)lnl = > x[klyln — ]

k=—00

[The notation x|[n]  y[n] is common, but not quite right.]

Properties (cf. multiplication):

m linear (distributive):
h[n] * (cax1[n] + aax2[n]) = a1 h[n] * x1[n] + a2 h[n] * x2[n]

B commutative: x x y = y % x
m associative: (x*y)*xz = xx*(y*2z)

m 0[n] is the identity element: x % 0 = x
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Computing the convolution (1)

ylnl= 3" xIklhln—k] = - -+x[0]A[n]-+x[1]A[n—1]+x[2] A[n—2]+ - -
k=—00
1 h[n] xmlﬂn XM]
TR 012
hln—1] ) x[1]h[n — 1] (k = 1)

012 — 0123

h[n — 2] I 2] (6 =2) yin]

%
_ = -

0123 0123 210123
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Computing the convolution (2): short impulse responses

Because x « h = h*x, also y[n] = >";7 _ h[k]x[n — k]|

x[n h[0]x[n]
1‘h[k] l [n] l

012 012 012
‘x[n —1] h[1]x[n — 1]
012 012
+

vl = holx{n] + A[1lx[n — 1]

012
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Exercise [exam January 2023]

Given the signals

x[n] = ,,@,1,2340 ]

h[n] = ) 77 ]

Determine y[n] = x|[n] * h[n].
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Exercise [exam January 2023]

Given the signals

x[n] = ,,@,1,2340 ]
h[n] = s ,’
Determine y[n] = x|[n] * h[n].
Compute y[n] = x[n] * h[n] = Z h[k]x[n — K]:
k=0
hl0]x[n] : ]2 4 6 8 00 0-
halx[n—1: [0 0 =1 —2 -3 —4 0 0---
y[n]: 0] 2 3 4 5 —400---
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Properties of LTI systems

An LTI system is causal iff h[n] = 0 for n < 0

Proof

y[n] = - -+ h[=2]x[n+ 2] + h[—1]x[n+ 1] + h[0]x[n] + A[1]x[n — 1] + - - -

Note that y[n] should not depend on x[n + 1], x[n + 2], ---. Therefore,
we need h[—1] =0, h[-2] =0,---.
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Properties of LTI systems

Description in matrix-vector notation (strictly speaking only for
S: 52 — 52)

2| | ko 0 x[-2)
yloal| | e k] Al x[-1]
= | o R el
VAT | e #B A ROT A <[]
T I SR T I R 0 <L)

linear <» matrix-vector; causal <> lower triangular

time-invariant <> constant along diagonals (“Toeplitz")
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Stability

A system S : x — y is called “BIBO” stable (bounded-input

bounded-output) if for every x : |x[n]| < M, < oo there is an M, < oo
such that y @ |y[n]| < M,.

Equivalently: §: /o —
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Stability

An LTI system is BIBO stable iff h[n] is absolutely summable:
2. |hln]| < oo

Equivalently: h € /4

Proof

m Sufficient:

Il = 1Y hlkix[n— K1l < D |hlK]| [x[n — k]| < My |h[K]|

m Necessary: Suppose > ™ |h[k]| = oo. Consider x[n] = \hh[[ n’]1]| Then

My =1 < oo while

y10] = " AIKIx[0 — 4] = Zh[k] |’},[[,f]]| S Jh{K]| = o
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Example

h[n] = a"u[n]

This system is causal. Is it stable?

m If [a| < 1, then

g |h[n]| = E la|" = ’ ’ < 00 : stable
o
0

m If [o| > 1, then the sum diverges: not stable.

3
TUDelft



FIR and IIR

An LTI system is FIR (Finite Impulse Response) if
hln] =0 for n< Ny and n>NMN

and else it is called IIR (Infinite Impulse Response).

Examples

1, n=0,1,2
m h[n] = uln] —u[n —3] = { 0 elsewhere

m h[n] = a"u[n] is lIR.

s FIR.

FIR systems are automatically stable (always summable)
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Interconnections of LTI systems

m Cascade connection: y = (x % hy) * hy = (x* hy) % hy

m Parallel connection: y = x % hy + x * hy = x * (hy + hy)

X h1 ho y = X hy hy
h]_ * h2
hy
X ——| E}—»y = X —» hl + h2 —y
hy
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Elementary discrete-time building blocks

x[n] — 4

—» y[n] = ax[n]

xa[n] —>€“9—> y[n] = xi[n] + xe[n]

xo[n]

x[n] —|z—1

—= ] = x[n 1]

x1[n] y[n] = xi[n] - x2[n]
S G

Here, the notation "z 1"

operator D)
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LTI system described by a Linear Difference Equation

N M
Zaky[n—k] = Zbkx[n—k], n=---,-10,1,---
k=0 k=0

This is an N-th order system (assuming ap # 0 and ay # 0).
There are IV initial conditions (if the recursion starts at n = 0).
The implementation is recursive:

yln)=—4 Yhrakyln -k + - > kLo bix[n — k]
Example: first-order system

x[n] yln]

y[n] + ay[n — 1] = bx[n]
= y[n] = bx[n] — ay[n — 1]
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Example: accumulator

n

vl = Y x[K]

k=m0 1 e N— 1)
n—1
- Z X[k] + X[n] yln—1]
k=—00 -1

y[n — 1] + x[n]

This implementation requires only one adder and memory element
(=delay). The delay remembers everything from the past that is needed
for the future (=the state).

Is this a stable system?
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Example: 1st order system

vl — gyIn =11 = Sl + 5xn 1]

ylnl = gyln = 1] + 3x[n] + 3x[n — 1]

x[n] > DD = y[n]

-\

1
2

\i
N
A
N[ =
TN
N
A

We will see later that there also exists a realization that uses only 1
delay element.
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