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Course labs
The lectures are alternated with 3 course labs, Wednesday in week 6, 7,
8. Topics:

Convolution

Frequency domain plots (FFT)

Filter design

The course labs are in the form of Python Colab scripts.

Enroll yourself in a group in Brightspace, before the start of the first
course lab.

Groups of 2; you select your teammate

Weekly deadlines (1 week after the lab, but you can submit earlier. . .)

Passing the course labs is a mandatory prerequisite for EE2L1 IP3.
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Chapter 5: The Fourier Transform

Given x(t), consider its Laplace transform, X (s).

X (s) =

∫
x(t)e−stdt ⇔ x(t) =

1

2πj

∫ σ+j∞

σ−j∞
X (s)estds

with σ + jΩ ∈ ROC

How would you plot X (s)?

x(t) = sin(t)u(t)

X (s) =
1

1 + s2

(ROC: Re(s) > 0)
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The Fourier Transform

We will define the Fourier Transform as X (jΩ), that is X (s) with
s = jΩ.

Since Ω is real, we can plot |X (jΩ)| (magnitude response) and
arg(X (jΩ)) (phase response). Much more clear than a plot of X (s)!

x(t) = sin(t)u(t)

X (jΩ) =
1

1− Ω2

[Actually, this result is wrong... why?]
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The Fourier Transform

We can still recover x(t) from X (jΩ) using the Inverse Laplace
Transform (with σ = 0): no loss of information!

X (jΩ) =

∫
x(t)e−jΩtdt ⇔ x(t) =

1

2πj

∫ ∞

−∞
X (jΩ)e jΩtdjΩ
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From Laplace to Fourier

Laplace Transform X (s) =

∫
x(t)e−stdt , with s ∈ ROC

Fourier Transform X (Ω) =

∫
x(t)e−jΩtdt

(Note change in notation, we should have written X (jΩ).)

This assumes the jΩ axis is in the ROC of X (s). But usually, we
don’t talk about the ROC anymore!

Many properties of the FT follow from those of the LT.

This integral can easily be evaluated numerically.

Ω is in rad/s. In EE we also often use F =
Ω

2π
, in Hz.

11 fourier transform 7 / 37



From Laplace to Fourier

The FT exists at least if x(t) ∈ L1, i.e. is absolutely integrable:∫
|x(t)|dt < ∞.

Proof If x(t) ∈ L1, then

|X (Ω)| = |
∫

x(t)e−jΩtdt| ≤
∫

|x(t)e−jΩt |dt =

∫
|x(t)|dt < ∞

so that the Fourier integral converges.

Signals in L1 taper off to zero as t → ±∞. We will want to consider
more general signals, e.g., x(t) = 1. This gives rise to distributions in
frequency domain, e.g. δ(Ω).
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Example

Does the Fourier transform of the following signals exist?

x(t) = u(t)

x(t) = e−2tu(t)

x(t) = e−|t|

Answer: The Fourier transform exists if the ROC of the Laplace
transform X (s) contains the jΩ-axis.

No: X (s) =
1

s
, ROC {Re(s) > 0}.

Yes: X (s) =
1

s + 2
, ROC {Re(s) > −2}, so X (Ω) =

1

2 + jΩ
.

Yes: X (s) =
2

1− s2
, ROC {−1 < Re(s) < 1}, so X (Ω) =

2

1 + Ω2
.
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Inverse Fourier transform
The Fourier transform is

X (Ω) =

∫
x(t) e−jΩt dt

The corresponding inverse Fourier transform is

x(t) =
1

2π

∫
X (Ω) e jΩt dΩ

Proof

1

2π

∫
X (Ω) e jΩtdΩ =

1

2π

∫ [∫
x(τ) e−jΩτdτ

]
e jΩtdΩ

=
1

2π

∫
x(τ)

[∫
e jΩ(t−τ)dΩ

]
︸ ︷︷ ︸

2πδ(t−τ)

dτ = x(t)

(This dirac property was shown in Lecture 1: completeness relation)

If we use F = Ω/(2π), then the factor 1/(2π) disappears.
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Example
Consider a pulse, x(t) = u(t + 1

2)− u(t − 1
2), then

X (Ω) =

∫ 1
2

− 1
2

e−jΩtdt =
1

jΩ

[
e jΩ/2 − e−jΩ/2

]
=

sin(Ω/2)

Ω/2
=: sinc(Ω/2)
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In this case, X (Ω) happens to be real, but generally it is complex

Careful: several definitions of the sinc function exist
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Spectra with delta spikes

The Inverse Fourier Transform shows:

X (Ω) = 2π δ(Ω) ⇒ x(t) =
1

2π

∫
2π δ(Ω)e jΩtdΩ = 1

and more generally

X (Ω) = 2π δ(Ω− Ω0) ⇒ x(t) = e jΩ0t

These signals x(t) are not in L1, and do not have finite energy. Still,
we can define their Fourier transform using dirac distributions.
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Example

cos(Ω0t) =
e jΩ0t + e−jΩ0t

2
⇒ πδ(Ω− Ω0) + πδ(Ω + Ω0)

Ω0

π

Ω0−Ω0
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Link to Fourier Series

If x(t) is periodic with period T0, then we can express it as

x(t) =
∑

Xke
jkΩ0t , Ω0 =

2π

T0

where the Xk are the Fourier series coefficients.

The Fourier transform of x(t) is X (Ω):

X (Ω) =
∑

XkF{e jkΩ0t} =
∑

Xk2π δ(Ω− kΩ0)

Thus, X (Ω) has a line spectrum. The harmonic frequencies are
Ωk = kΩ0.

The Fourier transform is also obtained as a limit of the Fourier series,
for T0 → ∞.

11 fourier transform 14 / 37



Link to Fourier Series
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Convolution

Directly from the Laplace Transform, we know

y(t) = x(t) ∗ h(t) ⇔ Y (Ω) = X (Ω)H(Ω)

This defines the concept of filtering in frequency domain.

(The book writes H(jΩ), perhaps to maintain the link to the Laplace
transform?)

Example: lowpass filter

Ω 0

H(Ω)

Ω 0

Y (Ω) = X (Ω)H(Ω)

Ω0

X (Ω)
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Duality

We have seen:

x(t) = δ(t) ⇔ X (Ω) = 1

x(t) = 1 ⇔ X (Ω) = 2π δ(Ω)

This generalizes:
x(t) ⇔ X (Ω)

X (t) ⇔ 2π x(−Ω)
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Duality

Proof Follows from the definition of the FT, with two changes of
variables: Ω → τ , and t → −Ω:

X (Ω) =

∫
x(t)e−jΩtdt

X (τ) =

∫
x(t)e−jτ tdt

X (τ) =

∫
x(−Ω)e jτΩdΩ =

1

2π

∫
2πx(−Ω)e jΩτdΩ

showing that the inverse FT of 2πx(−Ω) is X (t).

11 fourier transform 18 / 37



Scaling

x(at) ⇔ 1

|a|
X

(
Ω

a

)

Proof For a > 0, use the definition:∫
x(at)e−jΩtdt =

1

a

∫
x(at)e−j Ω

a
(at)d(at) =

1

a
X

(
Ω

a

)
For a < 0,∫ ∞

−∞
x(at)e−jΩtdt =

1

a

∫ −∞

∞
x(at)e−j Ω

a
(at)d(at) =

1

−a
X

(
Ω

a

)
and the result follows.

11 fourier transform 19 / 37



Scaling
Interpretation For a < 1, we stretch x(t), and then X (Ω) is shrunk
correspondingly.
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With a = 1/4:
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Example (problem 5.2)

Find the Fourier transform of
sin(t)

t
.

Hint: recall the FT pair

x(t) = u(t + 1
2)− u(t − 1

2) ⇔ X (Ω) =
sin(12Ω)

1
2Ω

Using duality,

sin(12 t)
1
2 t

⇔ 2π
[
u(Ω + 1

2)− u(Ω− 1
2)
]

Using the scaling property (a = 2):

sin(t)

t
⇔ 2π

2

[
u(12Ω+ 1

2)− u(12Ω− 1
2)
]

= π [u(Ω + 1)− u(Ω− 1)]
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Modulation

x(t) e jΩ0t ⇔ X (Ω− Ω0)

Example
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With y(t) = x(t) · e jΩ0t , where Ω0 = 10 [note y(t) is complex]:
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Multiplication in time domain [not in book?]

x(t) y(t) ⇔ 1

2π
X (Ω) ∗ Y (Ω)

Proof Apply the inverse Fourier transform to

Z (Ω) =
1

2π
X (Ω) ∗ Y (Ω) =

1

2π

∫
X (Ω′)Y (Ω− Ω′) dΩ′

then

1

2π

∫ [
1

2π

∫
X (Ω′)Y (Ω− Ω′)dΩ′

]
e jΩtdΩ

=
1

2π

∫
X (Ω′)e jΩ

′t

[
1

2π

∫
Y (Ω− Ω′)e j(Ω−Ω′)tdΩ

]
dΩ′

=
1

2π

∫
X (Ω′)e jΩ

′tdΩ′
[
1

2π

∫
Y (Ω′′)e jΩ

′′tdΩ′′
]

= x(t) y(t)
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Example

x(t) cos(Ω0t) ⇔
1

2π
X (Ω)∗π[δ(Ω−Ω0)+δ(Ω+Ω0)] =

1

2
[X (Ω−Ω0)+X (Ω+Ω0)]

This is consistent with the earlier result [modulation]:

x(t) e jΩ0t ⇔ X (Ω− Ω0)

x(t)
e jΩ0t + e−jΩ0t

2
⇔ 1

2
[X (Ω− Ω0) + X (Ω + Ω0)]
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Exercise (problem 5.6)

Consider the signal x(t) = cos(t), 0 ≤ t ≤ 1, and 0 otherwise.

Find X (Ω).

x(t) = cos(t) [u(t)− u(t − 1)] = cos(t) p(t)

so

X (Ω) =
1

2
[P(Ω + 1) + P(Ω− 1)]

with

P(Ω) = e−s/2 · e
s/2 − e−s/2

s

∣∣
s=jΩ

= e−jΩ/2 sin(Ω/2)

Ω/2
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Energy (Parseval)

Ex =

∫
|x(t)|2dt = 1

2π

∫
|X (Ω)|2dΩ

where Ex is the energy of the signal: the Fourier transform preserves the
energy.

Proof Write |x(t)|2 = x(t)x∗(t), and use the Inverse FT∫
|x(t)|2dt =

1

2π

∫ ∫
x∗(t)X (Ω)e jΩtdΩdt

=
1

2π

∫
X (Ω)

[∫
x(t)e−jΩtdt

]∗
dΩ

=
1

2π

∫
X (Ω)[X (Ω)]∗dΩ

If x(t) is in L2, then X (Ω) is in L2. This gives rise to many nice
properties (Hilbert space).
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Time shift

x(t − τ) ⇔ X (Ω) e−jΩτ

The time shift does not influence the amplitude spectrum, but causes a
linear “phase delay” −jΩτ .

Application Direction estimation using two antennas [plane wave]:

s(t)

x0(t) x1(t)
x

y

cτ

θ

d

x0(t) = x1(t − τ)

⇒ X0(Ω) = X1(Ω) e
−jΩτ

⇒ e−jΩτ =
X0(Ω)

X1(Ω)
⇒ τ = · · ·

and τ =
d

c
sin(θ) ⇒ θ = · · ·
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Applications

Radio astronomy

Phased array processing uses the phase differences in the received signal
to estimate the received power from each corresponding direction. This
results in an image of the sky.

Similar: ultrasound, MRI, phased array radar, synthetic aperture, · · ·

The same concepts are used in IP3 to locate a toy car using a
microphone array, or to locate the heart valves using a stethoscope array.
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Symmetry

If x(t) is real, then X (Ω) = X ∗(−Ω), so

|X (Ω)| = |X (−Ω)| , ∠X (Ω) = −∠X (−Ω))

The magnitude spectrum is even, the phase spectrum is odd.

If x(t) is also even, i.e., x(t) = x(−t), then X (Ω) is real.
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Differentiation

Recall for the Laplace transform: dx(t)
dt ⇔ s X (s).

dnx(t)

dtn
⇔ (jΩ)n X (Ω)

Integration

∫ t

−∞
x(t ′) dt ′ ⇔ X (Ω)

jΩ
+ π X (0) δ(Ω)
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Example

δ(t) ⇔ 1

u(t) ⇔ 1

jΩ
+ πδ(Ω)

sign(t) = 2[u(t)− 0.5] ⇔ 2

jΩ
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Example
Compute the FT of x(t) = sin(t)u(t):

sin(t) ⇔ π

j
(δ(Ω− 1)− δ(Ω + 1))

u(t) ⇔ 1

jΩ
+ πδ(Ω)

sin(t)u(t) ⇔ 1

2π
· π
j
(δ(Ω− 1)− δ(Ω + 1)) ∗

(
1

jΩ
+ πδ(Ω)

)
=

1

2(Ω + 1)
− 1

2(Ω− 1)
+

π

2j
(δ(Ω− 1)− δ(Ω + 1))

=
1

1− Ω2
+ j

π

2
(δ(Ω + 1)− δ(Ω− 1))

Cf. slide 5: the result there was incorrect because jΩ is not in the
ROC. As a result, the two delta spikes at Ω = ±1 were missed.
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Existence of the Fourier transform [extra]
Sufficient conditions for the Fourier integral to exist (Dirichlet
conditions):

x(t) ∈ L1

x(t) has finitely many extrema

x(t) has finitely many discontinuities

It can be shown that:

If x(t) ∈ L1, then X (Ω) is bounded and continuous, and

lim
Ω→±∞

X (Ω) = 0 (Riemann-Lebesgue lemma)

If the Dirichlet conditions are satisfied, then

1

2π

∫ ∞

−∞
X (Ω)e jΩt0dt =

1

2

(
x(t−0 ) + x(t+0 )

)
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Regularity and the Fourier transform [extra]

The decay of X (Ω) depends on the worst singular behavior of x(t)

If x(t) is p times differentiable and all derivatives are in L1, then

lim
Ω→±∞

|Ω|pX (Ω) = 0

so that regularity of x(t) translates to rapid decay of X (Ω)

If x(t) ∈ L1 has compact support (e.g., a pulse), then

X (Ω) ∈ C∞, i.e., is infinitely many times continuously differentiable

X (Ω) cannot have a compact support

Similarly for X (Ω) ∈ L1, by duality
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Example

Rectangular pulse (discontinuous; not differentiable):

p(t) = u(t + 1
2)− u(t − 1

2) ⇔ P(Ω) =
sin(Ω/2)

Ω/2
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Triangular pulse (1× differentiable; derivative discontinuous):

r(t) = p(t) ∗ p(t) ⇔ R(Ω) =

(
sin(Ω/2)

Ω/2

)2

-5 0 5

t [s]

0

0.2

0.4

0.6

0.8

1

r(
t)

-30 -20 -10 0 10 20 30

 [rad/s]

0

0.2

0.4

0.6

0.8

1

R
(

) R(Ω) decays as 1
Ω2

11 fourier transform 35 / 37



Summary
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