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Abstract—In pulse-based neural networks, synaptic dynamics
can have direct influence on learning of neural cogb, and
encoding of spatiotemporal spike patterns. In thispaper, we
propose an adaptive synapse circuit for increasedekibility and
efficacy of signal processing units in neuromorphicstructures.
The synapse acts as a multi-layer computational netwk, and
includes multi-compartment dendrites and different types of
post-synaptic back propagating signals. \ith built-in temporal
control mechanisms, the resulting reconfigurable nevork allows
the implementation of synaptic homeostatics.
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I.  INTRODUCTION

Advances in electrophysiology, neuroanatomical wdth
and molecular biology constantly exceed the teduichl
limits, and offer access to understanding of neairon
connectivity and the brain’s cognitive, computagibrand
adaptive properties. At the microcircuit level, then-random
features of cortical connectivity, such as acthdgpendent
short-term (STP) and long-term plasticity (LTP),ear
experimentally demonstrated [1]. The brain adoptsyhrid
analog-digital signal representation, i.e. the nsaiof
pulses/spikes transmit analog information in tineirtg of the
events, which are converted back into analog sigimalthe
dendrites (inputs) of the neuron. Information icaded by
patterns of activity occurring over populationsneurons, and
the synapses (connection to the subsequent newrangdapt
their function depending on the pulses they reggiveviding
signal transmission energy-efficiency, and flexipito store
and recall of information in the brain [2]. Synapititeractions
can be efficiently realized in silicon using anaMigSI circuits
[3], allowing designs that offer energy-efficientligions to
problems ranging from on-line classification of quaex
patterns to the real-time sensory processing. rbaits in [3]
offer a wide range of trade-offs between complexigze and
functionality of temporal dynamics; however, a nambf the
biological plausible features of our solution abbsent.

In this paper, we define a synapse learning ciréoit
activity adaptation, and increased flexibility apfficacy in
signal processing of a given time-varying task. Byaapse
circuit acts as a multi-layer computational networdnd
includes multi-compartment dendrites and postsyoamick
propagating signals to model local and global pysiaptic

[I. NEUROMORPHICSYNAPSE FORRECONFIGURABLE
NETWORKS

A. Dynamics of the Neuromorphic Structures

The dynamics of the integrate-and-fire neuron model
(either excitatory or inhibitory) can be descriligd[6]
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wherev; is the membrane potential of neurgn,, its time
constant,V, is the leak potential); is the maximal synaptic
conductance for synaptic connection between neurdo
neuroni, ande., is the synaptic reversal potential (30 mV).
The second term on the right hand side of (1) sepres the
current across the membrane due to the synapticections
between neurons, and is triggered by the arrivaéxiérnal
spikes. The postsynaptic input consist of a cursmirce
(gieey) and a conductance;, which defines the current flow
through ionotropic receptors (ionic ligand-gated ntheane
channels), e.g. AMPA channels, and the currentutjito
ligand-gated synaptic channels, similar to excitat@and
inhibitory synapses.

When excitatory-postsynaptic potentials (EPSPsggaad
by neuron arrive at the input of pre-synaptic neuigpeach of
the conductanceg; with i=1, ...N, i# is modified byw;, i.e.
weight, synaptic conductance [7], as the triggercttanges in
synaptic plasticity. The weight is directly linketb the
computational role it performs, e.g. to classifpsay stimuli,
to optimize the encoding of sensory information. [8he
synaptic conductance(both excitatory and inhibitory)
normalized by the membrane capacitance follow whffgal
equation model

dﬁz_&+zwijzfy(t-t”) (2)
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for a single exponential decaye!("™), where 7 is
synaptic time constant (kinetics is estimated from
electrophysiological data;~150 ms for NMDA ands~2-3 ms
for AMPA receptors, respectively [9])é(t) is the delta
function, and; represents the time at which spikes arrive at the
synapse, i.e. the delay of presynaptic input frdre jtth
neuron. The number of exponentials could be furithereased
to obtain even more accurate synaptic conductancdein

influences. Vith built-in temporal control mechanisms, the however, the computational costs in the case ofingles

resulting network allows the implementation of synaptic
homeostatics [4], e.g. global activity dependennhagyic
scaling [5],Hebbian learning [6]

exponential decay is only in the order of the numbé
neurons, i.e. comparable to the cost of merely tipglahe
neuron’s membrane potentials.
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Figure 1: a) Conceptual diagram of the neuromorpiapse, and a dendrite (input) and an axon soatput) of a biological neuron, b) Internal blodtghe
neuromorphic core with dedicated synapse, c) Higlellarchitecture for learning systems with anyaofaneuromorphic cores.

Sensory events imprint data traces at the synkguét, i.e.
through changes in the synaptic weight with Hebbian
activation of the presynaptic and postsynaptic oweur
(triggering long-term potentiation or long-term degsion).
Synaptic weight induced by Hebbian co-activatiotederate
unless it is consolidated [10]. In [11], the iritikace of
synaptic plasticity sets a tag at the synapse,tibmiog as a
marker for potential consolidation of the changessynaptic
efficacy. Conceptually, the synaptic tag represebtsh, the
suitability of particular synapses for consolidaticand the
functional unit that captures plasticity-related oghucts.
Consolidation entails the transmission of informatihrough a
write process. The three variables, which implentbatwrite
protection mechanism; weigk and of two hidden variables,

the tagsn; and the scaffoldz;, are coupled to its nearest

neighbour(s) via time-dependent gating variables

% = —f(Wu) + ”W%(f)(nij —wy) + o0&l (O + 1Y
2 = —f(mj) +2 95O (Wi —my) + 32 2 22Oz = my) +0E5© (3)
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where 1,, is the external input&(t) are independent

Gaussian white noise processes with the proped{s=0 and

COEL)>=0(t-t'), apw 0wy 0z 04z, are the coupling parameter

terms, which determine the strength of the intévastbetween

the variables, and(.) is the function, which models bistable

dynamics. The different variables are coupled toheather
through two functiong andp acting as gating variables [12].
The write protection of tagging-related variabledathe
scaffold is set ifi=0, andp=0, respectively.

B. Neuromorphic Networks in Neural Spike Classificatio

We use spike based learning to optimize the classife.
the neurons that perform classification are eqaivalto
hyperplanes tuned by local spike timing dependégmtigity.
For each time, we consider the decision function

fi() =2 w YK, (t-t)) =( )

Classification of new instances for one-versuscake is
completed with a winner-takes all scheme, whiclhgssts that
the neurons inhibit each other having only one weinne. the
classifier with the highest output function assigresclass.

w,®, (1))

The kernel functiorK,q 2 3(t-t;) includes both pre- and
postsynaptic factors (with single, an alpha-funttar double
expprecision, respectively)

Kl(t _tij ) = Ko[eXp(_(t _tij )/ Ts)]

Kz(t _tij )= Ko[(t _tij )/Ts) exp-(t _tij)/ Ts)]

Ka(t=t;) =ko[exp(t-t;) /7, ) —expt(t —t;)/7.)]

wherex, is the normalization constant, anéndz, are the
fall and rise time constants, respectively. To edtethe

classifier to cases in which the data are not tigeseparable,
we minimize

()
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where parametet regulates margin sizg,=sgnf;(t)), and
the constraints of the weight- vectomp*'w, 0 if i, wiw=1.
Since learning is online, the weight adaptatiorpésformed
every time when an input is offered to the syst&8j [

_[mwHnpy @, (t)/n if y, (f,(0)-f,(1)<1
. Tl -w otherwise
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wherey is a learning rate, i.e. the extent of synaptiange,
and @,(t) generally accounts for activity dependent pléstic
The connectivity structure and connection weightsneural
networks are highly nonrandom; the amplitudes ofSE®
between neurons are distributed as lognormal [&jgsesting
that some synapses are more effective in propapafikes
(note that delays follow Gaussian distribution)thie Hebbian
theory, if a neurorj connects to neuronwith w;, and both
neuronsare active simultaneously, the synaptic conductance
between neurongsandi is reinforced. Consequently, a vector
proportional tod,(t;) is added (potentiating, excitatory) to or
subtracted (depressing, inhibitory) fromof the active output
neuron if the output is correct or incorrect, retiyely [13].

C. Implementation Details

Reconfigurable neuromorphic networks, typicallynsist
of the circuits that contain only partially dendriproperties.
However, increased experimental evidence indicatesence
of a wide range of dendritic channels [14]-[15] ttmaodify
synaptic response in multiple ways, e.g. througbpldication,
regulation, detection of coincident inputs, the dfiit
structure scaling.
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Figure 2: Membrane potential dynamics for inhibjtand excitatory synapse.

100 p
PO W

e ¥ ,
w M 700

Pe

%)
—_ o
z r =
= 5
Q 4
§ o 500 §
S o
3 o 400 o
=1 | [+
o 40p, 1300 €
=
@ | 0
(7] ] c
s ! 1200 §

s

|
20 — - — firing rate

% |

oL T S FN ISR e n

0 1 2 3 4 5 6 7 8 9
Time [s]

Figure 3: Average synaptic weights of the inhijitelynapses and temporal

evaluation of firing rate.
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Figure 4: Net activity of the network.

Consequently, a synaptic circuit can be much more

computationally effective than just as a simplenpprocessing
unit [15]. Implemented synapse circuit [16] (Fig) Jcts as a
multi-layer computational system and offer infrasture for
(unsupervised) spike-based learning [15]-[18]. Tt¢iecuit

includes multi-compartment dendrites and differgmtes of
postsynaptic back-propagating signals. The chaimgggmaptic
morphology lead to modifications of receptor cottaffecting

synaptic dynamics and efficacy, and consequendgd Ito
alterations in network signal processing capaéditi The
effective synaptic conductance efficacy is deteediby both
presynaptic (depression and facilitation) and posiptic

factors. At the circuit input, two receptors areaitable.

NMDA receptor, which acts as the pre-synaptic mgeherates
stable persistent spikes, and offers activity-ddpah

In the post-synaptic part, the temporal summatioa lback
propagating spikes, i.e. dendrite [19] and somd Efkes,
respectively, is completed. The transconductancelifiens
have an enable/disable capability for power-effiti@peration.
The presynaptic spike is connected to the enablgralo
terminal of the amplifier and leads to an EPSP. gaal
summation of EPSPs initiates a dendritic spike.gibups
(bursts) of dendritic spikes are sufficiently sgaio drive the
soma, the neuron will generate action potentialssuRing
spike is back propagated into the dendrite. Thekbac
propagated dendrite and soma signals are multipletadded
to NMDA receptor signals to form the weight contsignal.
Repeating units form a neuromorphic core (Fig. fido) a
learning network (Fig. 1¢). Each core is composiedminput
decoder that connectKxL programmable synapses tQ
integrate-and-fire neurons, and the 1/0O network womication
layer. Each core has a local router, which comnataito the
routers of other cores through a dedicated read-tim
reconfigurable network-on-chip .

The real-time synaptic dynamics is reproduced [ilizing
arrays of pulse/spike integrators. The log domaiegrator
[15] circuit models slow NMDA receptor-mediated i@nts.
The circuit operates in subthreshold region andreffow area
and linear filtering properties. The spike lengtfisast AMPA
mediated current, are, however, too short to ingdficient
charge in the postsynaptic neuron membrane capadite
differential pair integrator circuit [4], amplifyhe signal, and
subsequently, it generates adequate charge touseesointo
the neuron’s integrating capacitor. The integr&tanslates fast
presynaptic pulses into long-lasting postsynapiicemts while
preserving temporal dynamics. Additionally, theegrator
offers the means to multiplex time spikes, and ribvjgles
tunable gain independent from the (tunable) timestant. The
transconductance amplifier implemented in the sgeais a
typical differential pair amplifier with three cemt mirrors and
enable/disable capability. To save the power, iheuits are
during normal operation mainly in the disabled mode
utilized hysteretic differentiator circuit with aaxponential
resistive element offers large range of the timestants of the
feedback loop (over several orders of magnitude).

[ll. EXPERIMENTAL RESULTS

In network simulations, we initialize the excitat@ynaptic
weight matrices to uniform values. The values wmedtypical
for neuromorphic and biomedical applications [4kteEnal

input is then applied to the network with learnimgle

mediating synaptic plasticity. Both excitatory aimdhibitory

synapse response properties, when stimulated bynatamnt
injection current, are illustrated in Fig. 2. Theadl bumps
exemplify the postsynaptic potentials generatethleysynapse
as a reaction to the presynaptic input spikes. Fidlustrate
temporal evolution of the postsynaptic firing raaed the
average synaptic weights of the inhibitory synapses a
weight decrease, (or depression), when a spikeestypaptic
input follows a spike at post-synaptic input, andvaight

increase, (or potentiation), when a spike at pgsésstic input

modifications of synaptic conductance. AMPA recepto follows a spike at presynaptic input. Fig. 4 ilhagés both, a

mediates a fast glutamatergic synaptic current rigedthe
soma.

several activity ranges due to the synchronousdiriand
consequently, a mean network activity histogram.
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Figure 5: Asynchronous irregular regime in the rekw(with fast synaptic rise
time.
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Figure 6: Synchrony in the network (with slow syti@pise time).
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Figure 7: The separation hypersurface - two clagsaphical representation
example; bold line represent decision boundaries.

Synchrony of a reconfigurable network consisting6df
neurons and 2048 synapses (32 per neuron) igdtestin Fig.
5 and Fig. 6. When synchronized at 300 Hz, the oedw
receive approximately 600k events per second, eatsmit
18.75k events/s. The stimulation leads to an irsgrem
synchrony and more correlated dynamics, i.e. tlas@Htocking
between stimulated neurons drives them in-phask edtch
other by the back propagating signals. The neusomare
sensitive to the neurotransmitter release vartghiti a weak
synapse than in a strong synapse; increasing ¢agidncy of
the test stimulus during constant background dgtiyénerates
a stronger depression. The information encodechénspike
trains is classified with a reconfigurable learnimgtwork as
illustrated in Fig. 7, where the bold line represehe decision
boundary. The classifier test dataset is basedegcordings
from the human neocortex and basal ganglia. An ptytio
classification success rate of ~ 97 % is obtainest the entire
dataset.

V. CONCLUSIONS

In this paper, we propose a self-learning neurotmorp
synapse for reconfigurable networks. The synapskides
multi-compartment dendrite and postsynaptic bacipagating
signals to model local and global post-synaptidugtices.
With built-in temporal control mechanisms, the résgl
network allows the implementation of synaptic homeostatics.
Reconfigurable network based on the proposed sgnasins
an asymptotic classification success rate of ~ 9ow4r the
entire dataset.
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