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Abstract—The pathophysiological processes underlying the 
ECG tracing demonstrate significant heart rate and the 
morphological pattern variations, for different or in the same 
patient at diverse physical/temporal conditions. Within this 
framework, spiking neural networks (SNN) may be a 
compelling approach to ECG pattern classification based on 
the individual characteristics of each patient. In this paper, we 
study electrophysiological dynamics in the self-organizing map 
SNN when the coefficients of the neuronal connectivity matrix 
are random variables. We examine synchronicity and noise-
induced information processing, influence of the uncertainty 
on the system signal-to-noise ratio, and impact on the 
clustering accuracy of cardiac arrhythmia. 

Keywords-ECG data classification, neuromorphic network, 
SNN, uncertainty, noise. 

I.  INTRODUCTION 

Classification of irregularities or variations in the 
morphological pattern in a recorded ECG waveform can be 
very challenging task for a wearable ECG acquisition and 
classification system due to the uncertainty and imbalanced 
classes among signals, contaminations of signals to 
physiological artefact and external noise, and substantial 
inter-patent variations in the pathophysiological processes, or 
within the single patient over different temporal or physical 
conditions. Several methods for generic ECG classification 
based on signal processing techniques exists; however, in 
general, the inter-patient variations of the ECG signals, and 
the stochastic nature of the main pathophysiological 
processes result in the inconsistent performance, and 
consequently, to significant variations in their accuracy and 
efficiency. In this context, spiking neural networks (SNNs), 
which provide principal mechanism for the neuromorphic 
engineering, are an effective platform to provide 
personalized prognosis by combining the heterogeneous 
sources of available information within the sensor fusion 
framework, as well as, by identifying meaningful patterns in 
data (e.g. convolutional neural networks (CNN) [1], 
recurrent neural networks (RNN) [2]). 

In this paper, we examine electrophysiological dynamics 
and synchrony in the neuromorphic self-organizing map 
(SOM) SNN [3]-[6]. Consequently, we distinguish between 
synchronized and unsynchronized spikes generated in a 
neural population, and we examine how noise induce 
spontaneous transitions in information channels and 
influence the clustering accuracy of several forms of cardiac 
arrhythmia.  

II. STOCHASTIC UNCERTAINTY AND SYNCHRONITY 

The noise originates from the quantal releases of neural 
transmitters, the random openings of ion channels, the 
coupling of background neural activity, etc. Subsequently, 
the noise induces neuronal variability, increase the neuron 
sensitivity to environmental stimuli, influence 
synchronization between neurons, and facilitate probabilistic 
inference. The impact of noise on neuronal dynamics is 
analysed in [7], and extended in [8]. In comparison, we study 
the impact of noise on the dynamics of the firing probability 
of spiking neurons. We derive the uncertainty model as a 
Markov process where stochastic integration is interpreted as 
an Itô system of stochastic differential equations 
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where Γ is the synaptic drive at time t, λ is the gain, 
which regulates exponential decay of the synaptic voltages, 
and mimics a spike-time dependent scaling of the input 
conductance, and function fi(.) represents the neuron firing 
rate. The first and second terms in the right hand side of (1) 
are the deterministic drift and stochastic diffusion parts of 
the stochastic differential equations, respectively, where we 
define Γ(t)≜[Γ1(t), Γ2(t),…, Γn(t)]

T, f(Γ)≜[f1(Γ1), f2(Γ2),…, 
fn(Γn)]

T, ψ≜[1/τ1, 1/τ2,…, 1/τn]
T, λ≜diag[λ1, λ2,…, λn]

T. ω(t) = 
[ω1(t), ω2(t),…, ωn(t)]

T describes noise in the input voltage 
and is represented by Brownian motion, i.e. an n-
dimensional standard Wiener process, and σ(Γ)=diag[σ1(Γ), 
σ2(Γ),…,σn(Γ)]T represents the state-dependent noise matrix 
for the Gaussian white noise process dω(t). Solving (1) 
requires first finding σ(Γ) and then obtaining its matrix 
square root. In our experiments we used the stationary 
statistics of open channels in the Markov channel model to 
define the noise processes in the conductance models. The 
general method for constructing σ(Γ) from deterministic drift 
is by Goldwyn method. From Itô’s theorem on stochastic 
differentials, variance-covariance matrix K(t) of Γ(t) with 
the initial value K(0)=Ε[ΓΓT] can be expressed in 
differential Lyapunov matrix equation form. Standard 
techniques for small dense Lyapunov equations such as the 
Bartels-Stewart method or Hammarling method [9] 
efficiently evaluate small to medium scale circuits. 
Alternatively, large dense Lyapunov equations, such as those 
in large scale circuits, are solved by sign function based 
techniques [10]. 



 
 
Figure 1: a) Top: ECG signal; Bottom: Example of population temporal coding in a SOM. The amount of input neuron spikes needed for activation to 

occur determines the latency of the network, and can be modified by potentiation or depression of the synapses linking the input and grid neurons; b) Top: 
Asynchronous irregular regime in the network; Bottom: in the oscillatory state the majority of neurons fire in tight synchrony; c) The temporal synchrony 
between two output spike patterns. 

III.  EXPERIMENTAL RESULTS 

We use the multi-parameter ECG data from MIT-BIH 
Arrhythmia Database. The ECG classification is performed 
with SOM neuromorphic network [5]. In the SOM, synaptic 
delays enable the formation of polychronous groups, i.e. 
distinctive clusters of neurons that fire together in response 
to a specific input stimulus [4]. If the synaptic 
communications between neurons are non-instantaneous, the 
network is characterized with stable n-cluster states for a 
wide set of parameters (the number of clusters in such states 
typically increases linearly with the inverse of the delay). In 
these states the network is subdivided into n groups of 
neurons. Within each group, neurons fire in synchrony (Fig. 
1a) (while a nonzero phase shift exists between groups), 
unless strong noise is present in the network. If the amplitude 
of input noise is sufficiently large, firing is no longer exact 
but may happen even though the noise-free processing has 
not yet reached threshold. Subsequently, the neurons fire in 
an asynchronous manner (Fig. 1b) and the activity of the 
network is time-invariant. The temporal synchrony between 
output spike patterns and individual spike timing 
dependencies can also be examined in the frequency domain, 
using spike-spike coherence (Fig. 1c). The neurons respond 
with variable strength to repeated, identical stimuli offered 
to the system. This uncertainty is shared among neurons 
causing correlations in trial-to-trial responsiveness of a 
neuronal population. Consequently, correlations reduce the 
signal-to-noise ratio (SNR) of a pooled population response, 
as shared fluctuations in response cannot be averaged away. 

The effect of uncertainty on the clustering accuracy of 
several selected forms of cardiac arrhythmia (normal beat, 
left bundle branch block beat, right bundle branch block 
beat, premature ventricular contraction, atrial premature beat, 
pace beat, ventricular flutter wave) is 4.6%, 8.5%, 7.9%, 
7.4%, 11.6%, 7.3%, and 8.8%, respectively. The clustering 
of each beat is evaluated based on the dominant beat type in 
a cluster. If the fluctuations in the synaptic current are large, 
the spontaneous transitions between the two stable states are 
induced in a random manner, and the examined features of 
the beat cannot fit within its cluster leading to the loss of the 
accuracy. Due to its small P-R interval atrial premature beats 
are the most impacted. 

IV.  CONCLUSIONS 

SNNs offer effective platform for advanced personalized 
prognosis and healthcare. In this paper, we study 
electrophysiological dynamics of SOM neuromorphic 
network when the coefficients of the neuronal connectivity 
matrix are random variables. We examine how noise induce 
spontaneous transitions in information channels and 
influence synchronous firing of the neuron populations. This 
approach provides key insight required to address signal-to-
noise ratio, response time, and linearity of the network, and 
subsequently, the clustering accuracy of several selected 
forms of cardiac arrhythmia. 
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