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Abstract—The pathophysiological processes underlying the Il.  STOCHASTICUNCERTAINTY AND SYNCHRONITY

ECG tracing demonstrate significant heart rate and the
morphological pattern variations, for different or in the same
patient at diverse physical/temporal conditions. Wthin this

framework, spiking neural networks (SNN) may be a
compelling approach to ECG pattern classification bBsed on
the individual characteristics of each patient. Inthis paper, we
study electrophysiological dynamics in the self-omnizing map
SNN when the coefficients of the neuronal connectty matrix

are random variables. We examine synchronicity anchoise-
induced information processing, influence of the ucertainty

on the system signal-to-noise ratio, and impact orthe
clustering accuracy of cardiac arrhythmia.

Keywords-ECG data classification, neuromorphic network,
SNN, uncertainty, noise.

l. INTRODUCTION

Classification of irregularities or variations irhet
morphological pattern in a recorded ECG waveform loa
very challenging task for a wearable ECG acquisitmd
classification system due to the uncertainty andalanced
classes among signals, contaminations of signals
physiological artefact and external noise, and tsuibsi
inter-patent variations in the pathophysiologicalgesses, or
within the single patient over different temporalphysical
conditions. Several methods for generic ECG clizsgibn
based on signal processing techniques exists; rewav
general, the inter-patient variations of the EC@hals, and

the stochastic nature of the main pathophysiold)gicadimensio

processes result in the inconsistent performance]
consequently, to significant variations in theic@acy and
efficiency. In this context, spiking neural netwerSNNSs),
which provide principal mechanism for the neuronmicp
engineering, are an effective platform

sources of available information within the sen$asion
framework, as well as, by identifying meaningfuttpens in
data (e.g. convolutional neural networks (CNN)
recurrent neural networks (RNN) [2]).

In this paper, we examine electrophysiological dyita

and synchrony in the neuromorphic self-organizingpm

(SOM) SNN [3]-[6]. Consequently, we distinguish ween

synchronized and unsynchronized spikes generatea in
neural population, and we examine how noise induc
spontaneous transitions in information channels anﬂ]

influence the clustering accuracy of several foohsardiac
arrhythmia.

to provide
personalized prognosis by combining the heterogesieo

[1],

The noise originates from the quantal releaseseafat
transmitters, the random openings of ion channts,
coupling of background neural activity, etc. Suhssly,
the noise induces neuronal variability, increase rteuron
sensitivity  to environmental stimuli, influence
synchronization between neurons, and facilitatdabdistic
inference. The impact of noise on neuronal dynanmcs
analysed in [7], and extended in [8]. In comparjsee study
the impact of noise on the dynamics of the firimghability
of spiking neurons. We derive the uncertainty maoakela
Markov process where stochastic integration igjmeted as
an Ité system of stochastic differential equations

drt) = (—wr(t) +Af (f(t))) dt
+o(r'(©)dw(t) o)

where I is the synaptic drive at timg A is the gain,

which regulatesxponential decay of the synaptic voltages,
and mimics a spike-time dependent scaling of thmutin
conductance, and functidi(.) represents the neuron firing

te. The first and second terms in the right hsidd of (1)
are the deterministic drift and stochastic diffusiparts of
the stochastic differential equations, respectivelljere we
define I'(t) 2 [I4(t), Io(®),..., T®O]T, )2 [0, LI),...,
f.(I1T, w21, 1hs,..., )", A2diaghy, Aa,..., A" oft) =
[w1(t), wa(b),..., on(t)]" describes noise in the input voltage
and is represented by Brownian motion, i.e. an
nal standard Wiener process, atfd=diago.(I),
oo(I),....on(1)]" represents the state-dependent noise matrix
for the Gaussian white noise process(tyl Solving (1)
requires first findinge(I) and then obtaining its matrix
square root. In our experiments we used the statjon
statistics of open channels in the Markov channetieh to
define the noise processes in the conductance sotleé
general method for constructiag/’) from deterministic drift
is by Goldwyn method. From It6’s theorem on stotibas
differentials, variance-covariance matrix K(t) of 71(t) with
the initial value K(0)=E[IT"] can be expressed in
differential Lyapunov matrix equation form. Stardiar
techniques for small dense Lyapunov equations sisctihe
Bartels-Stewart method or Hammarling method [9]
efficiently evaluate small to medium scale circuits

eAlternatively, large dense Lyapunov equations, sagkhose

large scale circuits, are solved by sign functimased
techniques [10].
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Figure 1: a) Top: ECG signal; Bottom: Example opplation temporal coding in a SOM. The amount g@uinneuron spikes needed for activation to
occur determines the latency of the network, amdbE modified by potentiation or depression of geapses linking the input and grid neurons; b): Top
Asynchronous irregular regime in the network; Bottdn the oscillatory state the majority of neurons fitetight synchrony; c)rhe temporal synchrony

between two output spike patterns.

I1l.  EXPERIMENTAL RESULTS

We use the multi-parameter ECG data from MIT-BIH

Arrhythmia Database. The ECG classification is qenied
with SOM neuromorphic networb]. In the SOM, synaptic
delays enable the formation of polychronous groups,
distinctive clusters of neurons that fire togethreresponse
to a specific input stimulus [4].
communications between neurons are non-instantan#uoe
network is characterized with stabfecluster states for a
wide set of parameters (the number of clustersiah states
typically increases linearly with the inverse oé ttelay). In
these states the network is subdivided intgroups of
neurons. Within each group, neurons fire in synehr@-ig.
la) (while a nonzero phase shift exists betweempgl
unless strong noise is present in the netwidtke amplitude
of input noise is sufficiently largdiring is no longer exact
but may happen even though the noise-free progessn

not yet reached threshol8ubsequently, the neurons fire in [2]

an asynchronous manner (Fig. 1b) and the activitthe

network is time-invariantThe temporal synchrony between
timing

output spike patterns and individual spike
dependencies can also be examined in the frequimgin,
using spike-spike coherence (Fig. 1c). The neurespond
with variable strength to repeated, identical stinoéfered
to the system. This uncertainty is shared amongomsu
causing correlations in trial-to-trial responsivemeof a
neuronal population. Consequently, correlationsicedthe
signal-to-noise ratio (SNR) of a pooled populatiesponse,
as shared fluctuations in response cannot be aagi@agay.

The effect of uncertainty on the clustering accyrat
several selected forms of cardiac arrhythmia (noroeat,
left bundle branch block beat, right bundle brarubck
beat, premature ventricular contraction, atriahpature beat,
pace beat, ventricular flutter wave) is 4.6%, 8.5P@%,
7.4%, 11.6%, 7.3%, and 8.8%, respectively. Theteting
of each beat is evaluated based on the dominahtygeain
a cluster. If the fluctuations in the synaptic emtrare large,
the spontaneous transitions between the two stthles are
induced in a random manner, and the examined =i
the beat cannot fit within its cluster leading he toss of the
accuracy. Due to its small P-R interval atrial patune beats
are the most impacted.

If the synaptic

IV. CONCLUSIONS

SNNs offer effective platform for advanced perseal
prognosis and healthcare. In this paper, we study
electrophysiological dynamics of SOM neuromorphic
network when the coefficients of the neuronal catimiy
matrix are random variables. We examine how noidede
spontaneous transitions in information channels and
influence synchronous firing of the neuron popuolasi. This
approach provides key insight required to addragsabkto-
noise ratio, response time, and linearity of thevoek, and
subsequently, the clustering accuracy of severkdctesl
forms of cardiac arrhythmia.
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