
Copyright © 2016 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics

Vol. 12, 1–9, 2016

Power-Efficiency of Signal Processing Circuits in
Implantable Multichannel Brain-Machine Interface

Amir Zjajo
Circuits and Systems Group, Delft University of Technology, Delft, 2628 CD, The Netherlands

(Received: 28 June 2016; Accepted: 4 October 2016)

The nature of the neural signals, increasing density in multichannel arrays, information quality,
and feasible data bandwidth pose significant challenges encountered in a power-efficient design of
implantable brain-machine interface. In this paper, we propose a set of solutions to address this
design problem at both circuit- and system abstraction level. In particular, we review circuits for real
time read-out of neural signals and discuss the role of classification in hardware neural processing
architectures; we review the challenges of realizing power-efficient circuits in physical systems and
present examples of mixed-signal electronic circuits that implement them; we provide a broad view
of optimization approaches, and their possible combination in effective complimentary techniques.
We validate the approach with experimental results obtained from our own circuits and systems,
and argue how the circuits and systems presented in this work represent a valid set of components
for power-efficient design of implantable multichannel brain-machine interface.
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1. INTRODUCTION
Brain machine interface (BMI) enable the interaction with
neural cells, either by recording (to facilitate early diagno-
sis and predict intended behavior before undertaking any
preventive or corrective actions), or by stimulation (to pre-
vent the onset of detrimental neural activity). Monitoring
the activity of a large population of neurons with high-
density microelectrode arrays in multichannel BMI is a
prerequisite for understanding the cortical structures and
can lead to a better conception of stark brain disorders,
such as Alzheimer’s and Parkinson’s diseases, epilepsy
and autism,1 or can aid to reestablish sensory (e.g., hear-
ing and vision) and motor (e.g., movement and speech)
functions.1 One of the main goals of the current neu-
ral probe technologies2 is to minimize the size of the
implants while including as many recording sites as pos-
sible, with high spatial resolution. This enables the fabri-
cation of devices that match the feature size and density
of neural circuits,3 and facilitates the spike classification
process.4 Since electrical recording from single neurons is
invasive, monitoring large numbers of neurons using large
implanted devices inevitably increases the tissue damage.
Although existing neural probes can record from many
neurons, the limitations in the interconnect technology
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constrains the number of recording sites that can be routed
out of the probe.6

The study of highly localized neural activity requires,
besides implantable microelectrodes, electronic circuitry
for accurately amplifying and conditioning the signals
detected at the recording sites. While neural probes have
become more compact and denser in order to monitor
large populations of neurons, the interfacing electronic cir-
cuits have also become smaller and more capable of han-
dling large amounts of parallel recording channels. Some
of the challenges in the design of analog front-end cir-
cuits for neural recording are associated with the nature
of the neural signals; the recording circuits have to be
designed with sufficiently low input-referred noise (i.e.,
to achieve a high signal-to-noise ratio (SNR)) and suf-
ficient gain and dynamic range. The raw data rates that
are generated by simultaneous monitoring of hundreds
and even thousands of neurons are large.7 Communicat-
ing large volumes of neuronal data over battery-powered
wireless links, while maintaining reasonable battery life,
is hardly possible with common methods of low-power
wireless communications. Evidently, some form of data
reduction or lossy data compression to reduce the raw
waveform data capacity, e.g., wavelet transform,8 must be
applied. Alternatively, only significant features of the neu-
ronal signal could be extracted and the transmitted data
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could be limited to those features only,6 which may lead to
an order of magnitude reduction in the required data rate.9

Additionally, if the neuronal spikes are classified on the
chip,10 and mere notifications of spike events are transmit-
ted to the host, another order of magnitude reduction can
be achieved. Adapting power-efficient spike sorting algo-
rithms can yet lead to significant power savings, with only
a limited accuracy loss.11

In this paper, we address design challenges in respect to
circuit miniaturization and power reduction of the neural
recording system, along with circuit topologies, architec-
ture trends, and (post-silicon) circuit optimization algo-
rithms. Power-efficiency is the main focus of both, the
circuit design (including circuits for signal conditioning,
quantization and classification), as well as the system
design: design variables include the number of obtainable
channels, feasible data rate, and available (battery) power
of the implantable system.
The paper is organized as follows: Section 2 focuses

on the architectural overview of a multi-channel neural
recording interface, circuit parameters formulation, and
associated process variability and noise. Section 3 dis-
cusses power-efficiency of analog front-end signal condi-
tioning and quantization circuits and its main limitations.
In Section 4, characterization of power-efficiency of the
digital back-end signal detection and classification circuits
is presented. Finally, Section 5 provides a summary and
the main conclusions.

2. IMPLANTABLE MULTICHANNEL
BRAIN-MACHINE INTERFACE

2.1. Architectural Overview of the
Brain-Machine Interface

The block diagram of a M-channel brain-machine inter-
face is illustrated in Figure 1. With an increase in the range
of applications and their functionalities, neuroprosthetic
devices are evolving to a closed-loop control system com-
posed of a front-end neural recording interface and a back-
end neural-signal processing, containing features such as
spike detection and classification circuits. The neural data
acquired by the recording electrodes is conditioned using
analog circuits. The low-noise amplification (LNA), band-
pass filtering, and programmable gain amplification (PGA)
(Fig. 2) of the neural signals is performed before the
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Fig. 1. Block diagram of a brain machine interface with M-channel front-end neural recording interface and K-channel back-end signal processing.

signals are quantized by an A/D converter (ADC) (Fig. 3).
The A/D converter output containing the time-multiplexed
neural signals is fed to a back-end digital signal process-
ing unit, which provides additional filtering and executes
a spike detection and classification. The relevant informa-
tion is then utilized for K-channel brain stimulation in a
closed-loop framework, or alternatively, transmitted to an
outside receiver for off-line processing.

2.2. Neural Signals
The neural signals have amplitude in the order of a few
�V to several mV and frequency spans from dc to a few
kHz. Local-field potentials (LFP), representing averaged
activity from small sets of neurons surrounding the record-
ing sites, are in the low-frequency range (∼0.5–300 Hz),
while action potentials (AP) or spikes, indicating single-
cell activity, are located in the higher-frequency range
(∼300–20 kHz). The test dataset in Figure 4 illustrate
recordings from the human neocortex and basal ganglia.
In Figure 5, we illustrate statistical voltage trace of a neu-
ron signal composed of a spike burst and biological noise.
Recording both local-field potentials and action potentials
using implanted electrodes yields the most informative
signals for studying neuronal communication and com-
putation. Consequently, the recording circuits have to be
designed with sufficiently low input-referred noise (i.e., to
achieve a high signal-to-noise ratio (SNR)) and sufficient
gain and dynamic range.
In the Hodgkin and Huxley neural cell model, a con-

figuration of a neural channel is predisposed by the states
of its constituent subunits, where each subunit can be
either in an open or closed state. Adding a noise term
to this formulation is consistent with the behavior of
the Markov process for channel gating. Subsequently, the
neural cell noise is modelled as Brownian motion, i.e.,
as a Gauss-distributed nonstationary stochastic process
with independent increments and heuristically fixed con-
stant variance.12 In intra-cortical microelectrode record-
ings, neural cell noise mainly originates from the firing
of several neurons in the tissue surrounding the recording
microelectrode, while thermal noise levels are influenced
by the electrode-tissue interface impedance in each indi-
vidual recording site and the recording bandwidth, i.e.,
a 36 �m diameter probe (1000 �m2� may have a capac-
itance of 200 pF, equivalent to ∼40 k� impedance at
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20 kHz, which determine the amount of noise added to
the signal (3.5 �Vrms at 37 �C). An effective way of
lowering high electrode impedances is reducing the dis-
tance between the electrode sites and the readout cir-
cuits, e.g., by placing an amplifier very close to the signal
source (the amplifier converts the high-impedance node
at the electrode site to a low-impedance node)13 and/or
changing material composition of the electrode, e.g., gold
electroplating.14
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Fig. 5. Statistical voltage trace of a raw neural signal; dark gray—
nominal voltage trace, black area—expected voltage trace; smaller figure:
light grey area—voltage traces from 1000 randomly selected neural chan-
nel compartments.

3. POWER-EFFICIENCY OF ANALOG
FRONT-END SIGNAL CONDITIONING AND
QUANTIZATION CIRCUITS

3.1. Signal Conditioning Circuits
The design constraints of front-end neural amplifiers such
as low-power, high-gain and low-noise operation, sta-
ble dc interface with the sensors (microprobes), and
small silicon area are even more pronounced when the
number of recording sites increases to several hun-
dred for typical multi-electrode arrays. The power dis-
sipation of front-end amplifiers (Fig. 2) is dictated
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by the tolerable input-referred thermal noise (IRN).
For minimum IRN, the transistors should operate in
the subthreshold region; IRN can be than expressed
as Vrms�ni =

√
��4kT�UTBW�/�2�2ID�	

15 (assuming first
order frequency response), where k is Boltzmann con-
stant, T is the absolute temperature, UT is the thermal
voltage, � is the subthreshold gate coupling coefficient, ID
is total drain current, and BW is the −3 dB bandwidth
of the amplifier. Consequently, for a given bandwidth the
noise is inversely proportional to the square root of the
supply current, hence, there exists the steep power cost
of achieving low-noise performance in an amplifier. To
adapt its noise per unit bandwidth, the bias current of
the LNA can be made variable (consequently, to keep the
overall bandwidth constant when the bias current of the
gain stage is varied, a bandpass filter is added to the out-
put of the LNA). The constant power, area and gain con-
tours are illustrated in Figure 6. The total area is shown
as the hyperbolic-shaped contour, while elliptic contours
define the total drain current, ID. In subthreshold region a
transistor has a maximum gm/ID, such that gm = �ID/UT.
Typically, desired high gm is obtained at the cost of an
increased bias current (increased power) or area (wide
transistors). However, for very short channel the carrier
velocity quickly reaches the saturation limit at which the
gm also saturates, becoming independent of gate length or
bias. The intrinsic gain degradation can be alleviated with
open-loop residue amplifiers, comparator-based switched
capacitor circuits,16 and correlated level shifting.17

On a transistor level, the noise contribution of the
amplifier input pair is reduced by increasing the transcon-
ductance gm, increasing the current, by using a cas-
code resistive loading rather than current-source loads, or
increasing the aspect ratio of the devices. The effect of the
last method, however, is partially canceled by the increase
in the noise excess factor. The noise voltages of the transis-
tors used as current sources (or mirrors) are multiplied by
the gm of the device itself i.e., minimizing gm minimizes
noise. Since the current is usually set by other require-
ments, the only possibility is to decrease the aspect ratio of
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Fig. 6. Two stages gm/ID versus constant gain (plain), constant area
(plain hyperbolic), and constant current (dashed elliptic) contours.

the device. This leads to an increase in the gate overdrive
voltage, which, as a positive side effect, also decreases the
thermal noise coefficient 
. IRN of the fully differential
LNA in (Fig. 2)18 is 3.1 �Vrms over 0.1–20 kHz. The
circuit achieves 55 dB closed loop gain, THD is below
1% for typical extracellular neural signals (smaller than
10 mV peak-to-peak). The common-mode rejection ratio
(CMRR), and the power-supply rejection ratio (PSRR)
exceeds 75 dB. The capacitive-attenuation band-pass fil-
ter with first-order slopes achieves 65 dB dynamic range,
210 mVrms at 2% THD, and 140 �Vrms total integrated
output noise. The total signal conditioning circuit, includ-
ing LNA and band-pass filter, consumes 2.1 �V/channel,
and occupies an area of 0.036 mm2/channel. In Table I,
we compare the state of the art signal conditioning circuits
to the system in Ref. [18].

3.2. Signal Quantization Circuits
Neural pattern classification and recognition require simul-
taneous recording from a large number of neurons (and
recording the LFP and AP simultaneously). This however
leads to the requirement of large dynamic range and signal
bandwidth for the analog front-end. In the worst case, we
assume that spikes with amplitude of tens of �V added on
LFPs with amplitudes of about 2 mV appear at the input of
a recording channel. If an input-referred noise of 2 �V is
needed to meet the SNR requirement of the neuron signal,
the dynamic range of the channel is around 60 dB, result-
ing in a 10-bit A/D conversion. Additionally, this sampling
has to be done fast enough to capture the information in
neuron signals, e.g., 40 kS/s sampling rate. For a neural
recording device with 128 channels this results in a data
rate of 51.2 Mbs−1. To relax the in-channel integration
density, part of the front-end electronics, usually an ADC,
is moved out of the channel to the periphery of the record-
ing area (e.g., for the sampling rate of 40 kS/s for one
channel to avoid extensive interpolation of spike samples,
640 kS/s ADC can be shared among 16 channels). Conse-
quently, a 128-channel front-end interface can be built in
16×8 configuration.
Several circuit topologies, such as current reuse,23 time

multiplexing,24 sleep modes,25 adaptive duty-cycling of the
entire analog front-end,26 and adaptive system bandwidth

Table I. Signal conditioning: Comparison with prior art.

[19] [20] [21] [22] [18]∗

Technology 0�18 0�13 0�18 0�065 0�065
VDD [V] 0�45 1�2 1�8 1 1
Gain [dB] 52 54–60 30–72 52�1 65
INF [�Vrms] 3�2 4�7 3�2 4�13 3�1
Bandw. [Hz] 10k 10–5k 300–6k 1–8.2k 20k
P/chann. [�W] 0�73 3�5 5�4 2�8 2�1
A/chann. [mm2	 0�2 0�09 0�08 0�042 0�036

Note: ∗simulation data
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Fig. 7. Spectral signature of SAR A/D converter-two tone test; black
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reduction, equivalent to 4 LSB loss in the dynamic range.

or resolution,27 can be used to improve power efficiency
of signal quantization circuits by exploiting the fact that
neurons spikes are irregular and low frequency. Signal
quantization in BMI is usually performed with SAR A/D
converter. The accuracy of the SAR A/D converter is deter-
mined either by the kT/C noise requirement, the required
capacitor matching, the size of parasitic capacitance, or
design rules of the technology. The matching properties
of the capacitors as well as the parasitic capacitances
affect the linearity characteristics of the converter. Addi-
tionally, the input parasitic capacitance of the comparator
is dependent on the input voltage of the comparator, which
itself varies during the conversion cycles, further degrad-
ing the linearity performance of the converter. The noise of
the signal conditioning electronic circuits is mainly deter-
mined by the thermal and flicker noise, e.g., nonstationary
stochastic process. The noise in signal quantization circuits
is, however, designated as wide-sense cyclostationary.28

The observed SNR of the system increases as the sys-
tem is isomorphically scaled up (Fig. 7), which suggests a
fundamental trade-off between SNR and speed of the sys-
tem (note that over-dimensioning in a case of higher yield,
leads to a larger area and higher power consumption). This
lower bound on the speed in a SAR A/D converter loop
is primarily a function of the technology’s gate delay and
kT/C noise multiplied by the number of SAR cycles nec-
essary for one conversion.

Table II. Signal quantization: comparison with prior art.

[19] [21] [32] [33] [30]∗ [34]∗ [35] [36]∗ [37]∗ [31]∗

Technology 0.18 0.18 0.12 0.09 0.18 0.09 0.18 0.35 0.09 0.09
Type SAR SAR Time Time Current SAR �
 SAR SAR Time
VDD [V] 0.45 1.8 1.2 1 1.2 1 1.8 3.3 0.5 1
fS [kS/s] 200 120 1000 1000 16 1000 50 16 1280 640 40
ENOB 8.3 9.2 10 7.9 8 9.34 10.2 8.9 9.95 9.4 9.5
FoM [fJ/conv-st] 21 382 175 188 132 2.87 0.22 93 2.36 6.2 21
Power [� W] 1.35 27 180 14 0.45 1.79 13 3.06 3 2.7 1.6
Area [mm2	 NR NR 0.105 0.06 0.078† NR 0.038 NR 0.048† 0.022†

Notes: ∗simulation data, †estimated, nr—not reported.

Recently, several alternatives for the SAR A/D con-
verter have emerged on a system-, e.g., combining signal
amplification and data conversion into a single circuit,29

or operational-level, e.g., current-mode converters,30 time-
mode converters (Fig. 3).31 For example, time-based ADC
(Fig. 3) in Ref. [31], achieves 9.4 ENOB at 640 kS/s,
occupy an area of 0.022 mm2 in 90 nm CMOS, and
consumes less than 2.7 �W, corresponding to a FoM
(=P/�2fin × 2ENOB�� of 6.2 fJ/conversion-step. In the cir-
cuit, a voltage signal is converted to a time-domain rep-
resentation using a comparator-based switched-capacitor
circuit and a continuous-time comparator. To improve the
power efficiency, resulting time domain information is
converted to the corresponding digital code with a two-step
time-to-digital converter (TDC), where fine quantization
of the resulting residue is obtained with folding Vernier
converter. In Table II, we compare31 to the state of the art
circuit realizations of the signal quantizers.

4. POWER-EFFICIENCY OF DIGITAL
BACK-END SIGNAL DETECTION AND
CLASSIFICATION CIRCUITS

4.1. Signal Detection Circuits
The ability to distinguish spikes from noise, and to dis-
tinguish spikes from different sources from the super-
imposed waveform, depends on both the discrepancies
between the noise-free spikes from each source and the
SNR in the recording system. The time occurrences of
the AP are detected by the absolute value threshold-
ing (AT)38 based on root-mean-square (AT-RMS), or based
on median (AT-median), the nonlinear energy operator
(NEO),39 an exponential-polynomial-component Hilbert
space detection (EC-PC)40 or discrete- or continuous-
wavelet transform.41 The power-efficiency in a neuron
signal detector is not only constrained by practical imper-
fections of a neuron signals, e.g., spike overlapping,
waveform variation, low SNRs, unresolved artifacts, and
interferences, but with a requirement for nonparamet-
ric and unsupervised detection to avoid frequent manual
parameter tuning. The structure of NEO and AT-RMS are
the most power-efficient, yet the EC-PC detector offers
the most balanced trade-off among hardware complexity,
functionality, and detection performance.
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4.2. Signal Classification Circuits
After the waveform alignment, to simplify the classifi-
cation process, a feature extraction step, e.g., principal
component analysis,42 or wavelet decomposition,38 char-
acterizes detected APs and represent each detected AP
in a reduced dimensional space. Based on these fea-
tures the spikes are classified (e.g., by k-means,43 expec-
tation maximization,44 template matching,45 Bayesian
clustering,46 artificial neural network (ANN), support vec-
tor machine (SVM)47–50), in the clusters, where each clus-
ter corresponds to the spiking activity of a single neuron.
The feature extraction and spike classification significantly
reduce the data requirements prior to data transmission
(in multi-channel systems, the raw data rate is substantially
higher than the limited bandwidth of the wireless teleme-
try). The accuracy of the neural spike classification in a
digital back-end signal processing unit directly increase
with A/D converter resolution, although it saturates beyond
5–6 bit resolution, ultimately limited by the SNR. How-
ever, since the amplitude of the observed neural signals
can vary, typically, by one order of magnitude, additional
resolution is needed (i.e., 2–3 bit), if the amplification
gain is fixed. Additionally, increasing the sampling rate of
the A/D converter improves neural classification accuracy,
since this captures finer features further differentiating the
signals.
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The SVM has been introduced to bioinformatics and
neural signal classification47–50 because of its excellent
generalization, sparse solution and concurrent utiliza-
tion of quadratic programming. Like ANN classifiers,
applications of SVMs to any classification problem require
the determination of several user-defined parameters, e.g.,
choice of an appropriate kernel and related parameters,
determination of regularization parameter and an appropri-
ate optimization technique. Correspondingly, SVM applies
the structure risk minimization instead of the empirical
risk minimization and solves the non-linear, dimension-
ality curse problems efficiently. A programmable neural
spike classifier based on multiclass kernel SVM for 128-
channel spike sorting system in Figures 8 and 950 tracks
the evolution of clusters in real-time. Threshold cross-
ings of a local energy measurement41 are used to detect
spikes (Fig. 10). A frequency-shaping filter significantly
attenuates the low frequency noise and helps to differ-
entiate similar spikes from different neurons. The feature
extraction based on maximum and minimum values of
spike waveforms first derivatives51 is employed due to its
small computation and little memory requirement, while
preserving high information score. To simplify the kernel
classifier trained by the SVM, we extend iterative greedy
optimization reduced set vectors approach with boosted
cascade classifier (Fig. 11). Consequently, we assess the
reduced expansion in a cascaded way, such that in most
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cases a very small number of support vectors are applied.
The training data (td) is split into subsets, and each one
is evaluated individually for support vectors in the first
layer. Hence, eliminating non-support vectors early from
the classification, significantly accelerates SVM procedure.
The scheme requires only modest communication from
one layer to the next, and a satisfactory accuracy is often
obtained with a single pass through the cascade. The
required arithmetic over feature vectors (the element-wise
operands as well as SVM model parameters) is executed
with two-stage pipeline (i.e., to reduce glitch propagation)
processing unit (Fig. 12). Flip-flops are inserted in the
pipeline to lessen the impact of active-glitching, and to
reduce the leakage energy.

Figure 13 illustrate a multi-class classification, where
the bold lines represent decision boundaries. The SVM
spike sorting performance has been summarized and
benchmarked (Fig. 14) versus four different, relatively
computationally-efficient methods for spike sorting: tem-
plate matching, principal component analysis (PCA),
Mahalanobis, and Euclidean distance. The performance
is quantified using the effective accuracy, i.e., total
spikes classified versus spikes correctly classified (exclud-
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Fig. 11. Binary boosted cascade architecture.

sv(xi)[j]

SUB

MULT

ADD/SUB

F/F

F/F

b0

α

k(.)f[j]

xj[j]

F/F

Fig. 12. Two-stage pipeline processing unit.

ing spike detection). The power-efficient clustering is
achieved50 (Fig. 15) by a combination of the several algo-
rithm and circuit techniques, namely, the Kesler’s transfor-
mation, a boosted cascade reduced set vectors approach,
a two-stage pipelined processing units, the power-scalable
kernels, the register-bank memory, a high-VT devices, and
a near-threshold supply. The number of support vectors
required is partly governed by the complexity of the classi-
fication task, i.e., as the SNR decreases more support vec-
tors are needed in order to define a more complex decision
boundary. For our dataset, the number of support vectors
required is reduced within the range of 300–310. The ker-
nels yield increasing levels of strength (e.g., false alarm
for linear kernel of 18 per day decrease to 1.2 per day
for RBF kernel). However, the required power for each
kernel varies by orders of magnitude. The signal detec-
tion and classification circuit implementation includes 31 k
logic gates resulting in a 2.64 mm2 area, and consumes
only 41 �W of power from a 0.4 V supply voltage.50 The
consumed power corresponds to a temperature increase of
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Fig. 14. Effect of SNR on overlapping spikes of three classes on sorting
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Fig. 15. Energy per cycle versus various SVM kernels.

Table III. Signal classification: comparison with prior art.

[52] [53] [54] [50]∗

Technology [nm] 65 90 65 65
Programmability no yes no yes
VDD [V] 0.27 1 0.3 0.4
No. of channels 16 128 1 128
Pow. Dens. [�W/mm2	 60.9 9.8 43.4 15.5
Power [�W	 75 87 2.17 41
Area [mm2	 1.23 8.9 0.05 2.64

Note: ∗simulated data.

0.11 �C (i.e., assuming the 0.029 �C/mW model), which
is ∼9 times lower than the required consumed power in a
neural implants safe range (<1 �C). In Table III, we com-
pare the state of the art spike sorting systems to Ref. [50].

5. CONCLUSION
In this paper, we address the power efficiency of brain-
machine interface at various abstraction levels, i.e., circuit-
and system level. It, therefore, provides a broad view of the
various solutions and their possible combinations in effec-
tive (complementary) techniques, without compromising

on required power and area, even in a neural interfaces
with a low SNR.
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