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Neuromorphic signal processing architectures capable of real-time applications are examined as a next generation, post-
Moore, ultra-low-power computing solution [1]. Conventional von Neumann-type hardware (such as DSPs, GPUs, and 
FPGAs) in spiking neural networks require very high bandwidths (in the GHz range), and subsequently, high power 
dissipation, to efficiently transmit spike signal between the memory and the processor. In contrast, neuromorphic signal 
processing circuits are implemented on optimized, special purpose hardware, which can provide direct one-to-one 
mapping and low instruction execution redundancy [2]. Disparity between sequential-processing, conventional 
computing, and parallel, event-driven, biological neural systems is even more prominent in autonomous, real-time 
systems, especially in the presence of noisy and uncontrolled sensory input. In neural signal processing systems, the noise 
offers distinct advantages by inducing neuronal variability [3] and, successively, enhancing the sensitivity of neurons to 
environmental stimuli [4], inducing synchronization between neurons [5], and facilitating probabilistic inference [6]. 
Consequently, probabilistic noise models, as a resource for neural computation in the context of neuromorphic systems, 
are implemented as artificial neural networks and Boltzmann machines [7]. 

In this paper, proposed neuromorphic Boltzmann system performs robust neural computation using noise-induced 
stochastic equilibriums to regenerate static data distributions, and a neuromorphic core extended with self-learning and 
adaptation. The structure of the core consists of an input decoder that connects via 1024×256 programmable synapses to 
256 integrate-and-fire neurons, an I/O network communication layer, and an activity-dependent dynamic voltage and 
frequency scaling (DVFS) circuits for active power reduction. The neuron circuits are current-mode, conductance-based, 
compact, process input data on demand, in real time, and produce fast asynchronous digital output pulses. The neuron’s 
time constants and spike frequency adaptation are controlled with adaptable circuit biasing, and consequently, the circuit 
can generate a wide range of time constants and spiking behavior. The neuron circuit employs positive feedback to reduce 
the neurons’ switching time, and reduce consumed power. The noise-induced stochastic dynamics [8] are implemented 
with log-domain subthreshold circuits, which offer high energy-efficiency and minimal power-delay products over several 
decades of operating range. 

A wide range of neural network algorithms, transformed into a hardware compatible format, can be implemented in the 
proposed neuromorphic core. We examined the utility of the noise-induced stochastic dynamics of Boltzmann machines 
in generalizing the variability of EEGs with a test dataset containing the segments of 10 normal and 10 abnormal EEG 
recordings from the human neocortex and basal ganglia. The training data were extracted from a 10-minute long recording 
in MIT-BIH database. Experimental results show that the proposed system can distinguish EEG signals with 96 % 
accuracy, within the early onset of 0.1 ms, due to the recursive accumulation of the signal difference, and concurrent 
implementation of the Boltzmann architecture arrays. The neuromorphic core is fully re-configurable, and consumes only 
[9]-[10] 31 pJ/spike at 0.8 V supply voltage in 65 nm CMOS technology. 
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