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Abstract— A time-domain methodology for noise analysis of
neural interface front-end with arbitrary determini stic neuron
model excitations is presented. Rather than estimag noise
behavior by a population of realizations, the neurh interface
front-end is described as a set of stochastic diffential equations
and closure approximations are introduced to obtainthe noise
variances, covariances and cross-correlations betere any
electrical quantity and any stochastic source as #&unction of
time. Statistical simulation shows that the propos& method offer
an accurate and an efficient solution closely appsomating those
from a time-domain Monte Carlo analysis.

l. INTRODUCTION

The recent trend in brain machine interfaces fourale
electrophysiological recording [1] has largely beeativated
by the growing interest in observing large scaleirraeal
activity. Quantifying noise in cellular dynamics darthe
physical electronic interface is one of the centrallenges in
the heterogeneous neural simulation and neurabiightion
[2] including neural prosthetics and closed-loopnstation
strategies. Vast majority of the techniques progdse noise
analysis are frequency-domain techniques that ppdicable
to a particular circuit or a class of circuits. ime-domain,
stochastic differential equations are proposed3jnt¢ obtain
the time-varying covariance matrix of nonlinearcaits (e.g.
oscillators in [4], PLLs in [5], discrete- and contous-time
circuits in [6]), and in [7], to obtain average andtantaneous
power spectral density (PSD). In [6], a numericatmods for
the efficient solution of stochastic differentiafer noise
analysis is proposed.

In this paper, we extend a time-domain, non-staftipn
stochastic noise analysis in [6] with a cyclo-statiry
stochastic process to include the treatment of kaingata
systems, and correspondingly, we derive the peradigitime-
varying spectral densities of such a process. lderorto
characterize the fundamental limits of the sengirggess and
post-processing interface circuit e.g. amplifierd ad/D
converter, we treat the neural cell noise flucarai as

homogeneous and inhomogeneous Markov chains arfd'@nnels,

interface electronics noise as a non-stationarychststic
process. This approach provides key insight reduite
address signal-to-noise ratio (SNR), response tigued
linearity of the physical electronic interface (j.saturation
level).
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Il.  STOCHASTICNOISEANALYSIS
A. Architectural Overiew of an Integrated Neural Irfeere

The signal quality in neural interface front-enésitle the
specifics of the electrode material and the elegissue
interface, is limited by the nature of the bio-putal signal
and itshiological background noiséjctating system resource
constraints (power, size, bandwidth, and thermasidation
i.e. to avoid tissue damage). The block diagramadfi-
channel neuratecording systenarchitecture is illustrated in
Figure 1. Due to the small amplitude of neural algrand the
high impedance of the electrode tissue interfaoglification
and low-pass filtering of the extracellular neusidnals is
performed before the signals can be digitized. Aput-
referred noise of an integrated front-endgative-feedback
amplifier needs to be smallethan those of electrode and
biological background noiseA successive approximation
register (SAR)-based A/D converter digitizes thepéiied
neural signals with 10 bits of resolution. A lowvper
monolithic digital signal processing (DSP) unit yides
additional filtering and executes a spike discriation and
sorting algorithms. The relevant information is rthe
transmitted to an outside receiver through thestratier or
used fork-channel stimulation in a closed-loop framework.

B. Noise Models

Neural cell noise modelin the Hodgkin and Huxley
framework, an neural channel's configuration isedained
by the states of its constituent subunits, wheeh eaubunit
can be either in an open or closed state [8]. Agidinnoise
term y(V,t) (x=mh, or n) to the deterministic ordinary
differential equation (ODE) of Hodgkin and Huxley i
consistent with the behavior of the Markov procdes
channel gating [9]. Such process can be contratbed
Langevin description (via a Fokker—Planck equati@md
expressed as delta-correlated noise processgs{t+z,t)=
k[ o (1-X)+BX]d(z), wherek is the total number of neural
and the transition rates(t) and p(t) are
instantaneous functions of the membrane potentf).
Dirac’s delta functiory designates that the noise at different
times is uncorrelated and the variabiesh, andn represent
the aggregated fraction of open subunits of differgpes,
aggregated across the entire cell membrane.
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Figure 1: Block diagram of a brain machine integfadth front-end neural interface and back-endaligmnocessing of an integrated neural implant.

Electrode-tissue interface noise modehe overall noise of
an electrode-tissue interface has contributionsmfrthe
tissue/bulk thermal noise, the electrode-electeolytterface
noise, and the electronic noise. The most importgmes of
electrical noise sources (thermal, shot, and flickeise) in
passive elements and integrated circuit devices Hasen
investigated extensively, and appropriate modets/el [10]
as stationary and in [3] as nonstationary noisercesu We
adapt model descriptions as defined in [3], whbezral and
shot noise are expressed Bgemalt+,t)=2kTG(t)é(r) and
Tsnot+7,0)=qlp(t)o(z), respectively, whereé is Boltzmann’'s
constant,T is the absolute temperatuf@,is the conductance,
g is the electron charge, ang is the current through the
junction. These noise processes correspond to tinent
noise sources, which are included in the modelsthef
integrated circuit devices. Tissue noise is modells the
thermal noise generated by the solution/spreading
tissue/encapsulation resistance [11] and the elgetnoise is
the thermal noise generated by the charge tramef@stor
[12]. The noise of the recording electronic cirsug mainly
determined by the thermal and flicker noise gemerdty the
input amplifier. Although the preamplifier can provide first-
order low-pass filtering, dedicated low-pass fdtare used to
further minimize high-frequency noise. The cut-séfquency
of low-pass filters is set tfyeuro=10 kHz, whereyeyron is the
signal bandwidth of the action potential.

A/D converter noise modeBampled data systems operate

on the series of discrete-time samples taken aetigeof the
sampling period. Although the details of the preaosg during
each period result in nonstationary noise voltagescurrents,
the same operation is performed each clock cyebkdihg to
the same signal statistics each clock cycle. Caresdty, such

Swoc(f). The noise of the input sampler and the converter
guantization noise add to the input-referred n®iS® to give
the total input noise PSDSewa(f)=Sampidf)+Sanc(f)+S(F).
where S;ampdf)=(KT/C5)/(f4/2) is the noise PSD from the input
sampler over the Nyquist range<{Q..o<f42) and §(f)=
(Vise/12)/(42) is the A/D converter quantization noise.

C. Spectal Density and Time-Varying Variance

Consider description of the front-end neural irgeef with a
system of stochastic differential equations

F¢'r,t)y+B(r,t)[x=0 (1)

wherer is the vector of stochastic processes that reptese
the state variablegt) (e.g. node voltages), ailr,t) is state
and time dependent modulation for the vector ofs@oi
sourcesy is a vector of white Gaussian procesggsi.e. the
derivative of the standard Wiener process, with the

%utocorrelation function given by(t+z,t)=[y(t+7)y(t)] . Since

noise is treated as a perturbation, a system ofinean
stochastic differential equations in (1) is piecewiinearized
with A=[(r-ro)".(x-x0)"]"; the partial results are than
combined to obtain the desired approximation. Wel wi
interpret (1) as an Itd0 system of stochastic déffeial
equations. Such definition is consistent with thearkbv
process for neural channel gating with continu@mpde pats.
Using the multidimensional 1td formula, the varianmatrix
K(t) of A1) is expressed in differential Lyapunov matrix form
as

dK (t)/dt = E(t)K (t) + K ()E()" +B(t)B(t)" (2)

where E(t)=F'(.) and Kij(t)=£[/1i(t)/lj(t)T], with the time-
varying spectral, cross-spectral density matr&(t,f)=
HK(t,7)}. Correspondingly, the instantaneous periodically

stochastic process can be described as wide-Sengfe varying spectral densitieS(f) of the cyclostationary

cyclostationary. The special case of a white nmipat source
is of particular importance since the majority bk tnoise
sources can be traced back to white noise geneiratecuit
components. For a white noise step input, the autelation
is a delta function, wher&,, is the one-sided white noise
power spectral density (PSD) of the underlying egisocess.
By using Parseval’s theorem, the variance of thpuiuas a
function of the autocorrelation simplifies td{(t+z,t)=

stochastic process i.e. in A/D converters, canpgessed as
the derivative with respect to time of the expectetse PSD

dK ' (t)/dt = E(t)K ' (t) + K (t) exp(j at) (3

where the elements of the vectéf =&AL ()R (tw)} [15],
and R(tw) is the Fourier transform of #&z-segment of the
noise waveform. To solve the system in (3), we né&md
calculate the time-varying transfer functions frahe noise

1/2S,(t)o(z) [13]. The one-sided noise PSD of the sampledsourcey(t) to the components aft), as defined in (2). To

output can then be found from the sum of the fiteand

shifted two-sided input noise PSEXf) [14]. Measurements of
the output codes for a dc input signal to the AdDwerter can
be used to obtain an input-referred noise PSD attim

obtain a numerical solution, (2) has to be diszeetiin time
using a suitable scheme, such as any linear ntafjti+:ethod,
or a Runge-Kutta method. If backward Euler is agaplio (2),
the differential Lyapunov matrix equation is writtdn a



special form referred to as the continuous-timeelatgic  5%; cputime is reduced from 2 hours to 46 sec for 25 s o
Lyapunov matrix equation model time Figure 4 illustrates the number of iteration steps.
EK(t)+K(t)E +B.B =0 (4) After Iowj and high-pass ﬁlterir_19 and amplificatiothe noisy

neural signal is sampled with SAR A/D converter. An
example of the time-domain noise estimation andenpower
spectral density at the output of the low-passeffilis
illustrated in Figure 5 and Figure 6, respectivelyor
frequencies higher than ~10 kHz, capacitanceseaintierface
form the high-frequency pole and shape both theasignd
the noise spectrum; the noise is low-pass filtetedthe
recording amplifier inputs. The interface’s inpujuévalent
Ki =(E] =yl )E +yl1,) KL(E -yl)(E +yi|n)‘1(5) noise voltage decreases as the gain across thefyangpl
_2y (ET +y 1 ) BB (E, +y1,)" sjtages increase (Flgure 7?, e.g. t_he ratio of there of the
_ _ _ signal power over its noise variance can be exptbss
for iteratesi = 1,2,... This method generates a sequence OfSNR:Fzzl(ffzneurar"02e|ectrode+2i(HjGj'l)Jzamp,D, where Fy is the
matriceSKi, which converges fast towards the solution fortota| Signa' powe'ro-zampyi represents the variance of the noise
sparse matrices with small bandwidth [16], providleat the 5qded by théth amplification stage with gair;, Polectrode IS
iteration shift parameterg are chosen (sub)optimally. Since the variance of the electrode anthe, is variance of the
iteration starts withK,=0, K; will have rank at mostxn,  pjplogical neural noise. The observed ShiRhe system also
wheren is the number of vectors By. As a result, a sequence jncreases as the system is isomorphically scaledwinich
of matricesk; needs only to be represented by less than  syggests a fundamental trade-off between SNR aeedspf
vectors. the system.

K(t) at time pointt, is calculated by solving the system in
(4). In the circuit analysis, the matri is, in general, not a
full-rank matrix; it may have zero rows and columasd,
similarly, the node equation corresponding to thisle will
not contain any time-derivatives. Consequently rewerite (4)
as a sparse linear matrix-vector system in stanftard and
solve it with adjusted alternating direction method
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Ill.  EXPERIMENTAL RESULTS

n
o

The proposed method allows for any deterministioroe
model, whose neural conductance is described byaekdw
process, to be converted into an equivalent stdichesrsion
without involving any heuristics on the choice dfet
parameters for extra noise sources. The covariaratex is
periodic with the same period as either the inpghad (e.g.,

o

Membrane potential (mV)
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o

translinear amplifier) or the clock (in sampledadaystems). B T 0 0 30 39 a0
Moreover, with the proposed method, it is also fssto Time (ms)

compute all the cross-correlations between any trédat Figure 2: Nominal (without noise) voltage tracenefiron cell activity; the
guantity and any stochastic source. This makesdgsiple for ~ complex spike burst is followed by a pause in sjitvity.

the designer to determine the fundamental limit tbé 60 ‘ ‘ ‘
system’s dynamic range, so that design efforts t&n < or i
addressed to the most critical section of the dirand avoid £ 20

deteriorating power and chip area by overdesign. thé¢ § o

experimental results are carried out on a singlecgssor §-20*

Ubuntu Linux 9.10 system with Intel Core 2 Duo CP2J86 g o

GHz processor and 6 GB of memory. The proposed adeth = 0

and all sparse techniques have been performedimerical 80 o 15

computing environment [17]. fime fms]

In time domain, a Widespread approach for noisallsition Figure 3: Statistical voltage trace of neuron aalivity; grey area -

is Monte Carlo (I\/IC) analysis. However, accuratelyvoltage traces from 1000 randomly selected neunahwgel compartments,
. . . . black area — expected voltage trace.

determining the noise requires a large numberrafikitions,
so consequently, the Monte Carlo based methodsecpu-
time consuming in complex, multichannel neural rifstee. ]
The time series representation of an neuron sighathe 3
preamplifier’s input (Figure 2) are composed ofpikes burst, g 107} .

plus additive Gaussian white noise (Figure 3, gama with
1000 randomly selected neural channel compartmants
black area with filtered out predicted bias frore #stimated ‘ ‘ ‘ ‘ ‘ ‘
variances?). Difference in standard deviation of the proposed ° s 10 e ation sten 2 30 3
method vs. Monte Carlo analysis for 1000 iteratitnwithin

Figure 4: Stopping criterion: maximal number ofét#n steps.
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Figure 5: Noise amplitude in time-domain at thepotitof the low-pass

filter; in comparison with 1000 Monte Carlo trialhie accuracy is within
3.2% with 21-foldcputime reduction.
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Figure 6: Noise PSD at the output of the low-pétar f
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Figure 7: Spectral signature of SAR A/D converteo-ttone test; black

area — spectral content with nominal gain, grey arepectra with 20% gain

reduction, equivalent to 4 LSB loss in the dynaraitge.

Design Area SNR (100Hz-10kHz) [dB]/channel
WCD MC  SNA t(cpu)
[mm?  slow, nom, fast [dB] [dB] rel. rel.
LNA 0.096 58.5, 60.9, 62.5 58.9 4.3 354
LPF 0.052 57.1,58.9, 59.6 58.1 3.2 21.7
HPF 0.066 56.3, 58.2, 59.7 56.9 4.1 23.4
PGA 0.058 59.3,60.7, 61.4 60.2 5.6 43.4
SARomp  0.036 56.7,58.7,59.4 57.4 2.9 17.2
Roac 0.074 57.9, 60.7, 61.6 59.3 6.2 24.6
SARsgic 0.042 62.5, 64.6, 65.6 63.7 4.3 32.3
Total 0.424 55.4,57.3,58.3 56.9 6.4 38.8
Average 4.6 29.6

TABLE |- SUMMARY OF THE ALGORITHM PERFORMANCE

In Table 1, SNR/channel estimated with worst-casdyais
(WCD) and 1000 Monte Carlo (MC) iterations is comgzh
across the neural interface circuits with the psmob
stochastic noise analysis (SNA). Our approach alldavge
cpu-time reduction, ranging from 17-fold to 43-foldith 29-
fold on average. Difference in standard deviatibiSNA vs.
Monte Carlo analysis is less than 4.7% on average.

IV. CONCLUSION

In this paper, we solve the set of linear time-irzgy
equations, including the noise content descriptmiiind the
steady state value of the time-varying variancerima® he
variance matrix is periodic with the same perioceiser the
input signal (e.g., translinear amplifier) or théoak (in
sampled data systems). Moreover, we compute alctbss-
correlations between any electrical quantity ang stnchastic
source and compute noise spectral density. In araheu
interfaces with large biological noise, this makéts
conceivable to determine the limit of the systemigamic
range, and avoid deteriorating power and chip doga
overdesign.
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