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Abstract— A time-domain methodology for noise analysis of 
neural interface front-end with arbitrary determini stic neuron 
model excitations is presented. Rather than estimating noise 
behavior by a population of realizations, the neural interface 
front-end is described as a set of stochastic differential equations 
and closure approximations are introduced to obtain the noise 
variances, covariances and cross-correlations between any 
electrical quantity and any stochastic source as a function of 
time. Statistical simulation shows that the proposed method offer 
an accurate and an efficient solution closely approximating those 
from a time-domain Monte Carlo analysis. 

I. INTRODUCTION 

The recent trend in brain machine interfaces for neural 
electrophysiological recording [1] has largely been motivated 
by the growing interest in observing large scale neuronal 
activity. Quantifying noise in cellular dynamics and the 
physical electronic interface is one of the central challenges in 
the heterogeneous neural simulation and neural rehabilitation 
[2] including neural prosthetics and closed-loop stimulation 
strategies. Vast majority of the techniques proposed for noise 
analysis are frequency-domain techniques that are applicable 
to a particular circuit or a class of circuits. In time-domain, 
stochastic differential equations are proposed in [3] to obtain 
the time-varying covariance matrix of nonlinear circuits (e.g. 
oscillators in [4], PLLs in [5], discrete- and continuous-time 
circuits in [6]), and in [7], to obtain average and instantaneous 
power spectral density (PSD). In [6], a numerical methods for 
the efficient solution of stochastic differentials for noise 
analysis is proposed.  

In this paper, we extend a time-domain, non-stationary 
stochastic noise analysis in [6] with a cyclo-stationary 
stochastic process to include the treatment of sampled data 
systems, and correspondingly, we derive the periodically time-
varying spectral densities of such a process. In order to 
characterize the fundamental limits of the sensing process and 
post-processing interface circuit e.g. amplifier and A/D 
converter, we treat the neural cell noise fluctuations as 
homogeneous and inhomogeneous Markov chains and 
interface electronics noise as a non-stationary stochastic 
process. This approach provides key insight required to 
address signal-to-noise ratio (SNR), response time, and 
linearity of the physical electronic interface (i.e., saturation 
level).  

II. STOCHASTIC NOISE ANALYSIS 

A. Architectural Overiew of an Integrated Neural Interface 

The signal quality in neural interface front-end, beside the 
specifics of the electrode material and the electrode/tissue 
interface, is limited by the nature of the bio-potential signal 
and its biological background noise, dictating system resource 
constraints (power, size, bandwidth, and thermal dissipation 
i.e. to avoid tissue damage). The block diagram of a M-
channel neural recording system architecture is illustrated in 
Figure 1. Due to the small amplitude of neural signals and the 
high impedance of the electrode tissue interface, amplification 
and low-pass filtering of the extracellular neural signals is 
performed before the signals can be digitized. An input-
referred noise of an integrated front-end negative-feedback 
amplifier needs to be smaller than those of electrode and 
biological background noise. A successive approximation 
register (SAR)-based A/D converter digitizes the amplified 
neural signals with 10 bits of resolution. A low-power 
monolithic digital signal processing (DSP) unit provides 
additional filtering and executes a spike discrimination and 
sorting algorithms. The relevant information is then 
transmitted to an outside receiver through the transmitter or 
used for K-channel stimulation in a closed-loop framework. 

B. Noise Models 

Neural cell noise model: In the Hodgkin and Huxley 
framework, an neural channel’s configuration is determined 
by the states of its constituent subunits, where each subunit 
can be either in an open or closed state [8]. Adding a noise 
term χx(V,t) (x=m,h, or n) to the deterministic ordinary 
differential equation (ODE) of Hodgkin and Huxley is 
consistent with the behavior of the Markov process for 
channel gating [9]. Such process can be contracted to a 
Langevin description (via a Fokker–Planck equation) and 
expressed as delta-correlated noise processes Γneuron(t+τ,t)= 
1/κ[αx(1-x)+βxx]δ(τ), where κ is the total number of neural 
channels, and the transition rates αx(t) and βx(t) are 
instantaneous functions of the membrane potential V(t). 
Dirac’s delta function δ designates that the noise at different 
times is uncorrelated and the variables m, h, and n represent 
the aggregated fraction of open subunits of different types, 
aggregated across the entire cell membrane. 
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Figure 1: Block diagram of a brain machine interface with front-end neural interface and back-end signal processing of an integrated neural implant.  

 
Electrode-tissue interface noise model: The overall noise of 

an electrode-tissue interface has contributions from the 
tissue/bulk thermal noise, the electrode-electrolyte interface 
noise, and the electronic noise. The most important types of 
electrical noise sources (thermal, shot, and flicker noise) in 
passive elements and integrated circuit devices have been 
investigated extensively, and appropriate models derived [10] 
as stationary and in [3] as nonstationary noise sources. We 
adapt model descriptions as defined in [3], where thermal and 
shot noise are expressed as Γthermal(t+τ,t)=2kTG(t)δ(τ) and 
Γshot(t+τ,t)=qID(t)δ(τ), respectively, where k is Boltzmann’s 
constant, T is the absolute temperature, G is the conductance, 
q is the electron charge, and ID is the current through the 
junction. These noise processes correspond to the current 
noise sources, which are included in the models of the 
integrated circuit devices. Tissue noise is modelled as the 
thermal noise generated by the solution/spreading or 
tissue/encapsulation resistance [11] and the electrode noise is 
the thermal noise generated by the charge transfer resistor 
[12]. The noise of the recording electronic circuits is mainly 
determined by the thermal and flicker noise generated by the 
input amplifier. Although the preamplifier can provide first-
order low-pass filtering, dedicated low-pass filters are used to 
further minimize high-frequency noise. The cut-off frequency 
of low-pass filters is set to fNeuron=10 kHz, where fNeuron is the 
signal bandwidth of the action potential. 

A/D converter noise model: Sampled data systems operate 
on the series of discrete-time samples taken at the end of the 
sampling period. Although the details of the processing during 
each period result in nonstationary noise voltages and currents, 
the same operation is performed each clock cycle, leading to 
the same signal statistics each clock cycle. Consequently, such 
stochastic process can be described as wide-sense 
cyclostationary. The special case of a white noise input source 
is of particular importance since the majority of the noise 
sources can be traced back to white noise generated in circuit 
components. For a white noise step input, the autocorrelation 
is a delta function, where Sxo is the one-sided white noise 
power spectral density (PSD) of the underlying noise process. 
By using Parseval’s theorem, the variance of the output as a 
function of the autocorrelation simplifies to Γ(t+τ,t)= 
1/2Sxo(t)δ(τ) [13]. The one-sided noise PSD of the sampled 
output can then be found from the sum of the filtered and 
shifted two-sided input noise PSD Sx(f) [14]. Measurements of 
the output codes for a dc input signal to the A/D converter can 
be used to obtain an input-referred noise PSD estimate, 

SADC(f). The noise of the input sampler and the converter 
quantization noise add to the input-referred noise PSD to give 
the total input noise PSD Stotal(f)=Ssample(f)+SADC(f)+Sq(f), 
where Ssample(f)=(kT/Cs)/(fs/2) is the noise PSD from the input 
sampler over the Nyquist range (0≤fNeuron≤fs/2) and Sq(f)= 
(VLSB

2/12)/(fs/2) is the A/D converter quantization noise.  

C. Spectal Density and Time-Varying Variance 

Consider description of the front-end neural interface with a 
system of stochastic differential equations 

0),(),,'( =⋅+ χrBrrF tt     (1) 

where r  is the vector of stochastic processes that represents 
the state variables r(t) (e.g. node voltages), and B(r ,t) is state 
and time dependent modulation for the vector of noise 
sources. χ is a vector of white Gaussian processes χ(t) i.e. the 
derivative of the standard Wiener process, with the 
autocorrelation function given by Γ(t+τ,t)=E[χ(t+τ)χ(t)] . Since 
noise is treated as a perturbation, a system of nonlinear 
stochastic differential equations in (1) is piecewise-linearized 
with λ=[(r−r 0)

T,(χ−χ0)
T]T; the partial results are than 

combined to obtain the desired approximation. We will 
interpret (1) as an Itô system of stochastic differential 
equations. Such definition is consistent with the Markov 
process for neural channel gating with continuous sample pats. 
Using the multidimensional Itô formula, the variance matrix 
K (t) of λ(t) is expressed in differential Lyapunov matrix form 
as  

TT ttttttdttd )()()()()()(/)( BBEKKEK ++=   (2) 

where E(t)=F’(.) and Kij(t)=Ε[λi(t)λj(t)
T] , with the time-

varying spectral, cross-spectral density matrix Sλ(t,f)= 
F{K(t,τ)}. Correspondingly, the instantaneous periodically 
time-varying spectral densities S(f) of the cyclostationary 
stochastic process i.e. in A/D converters, can be expressed as 
the derivative with respect to time of the expected noise PSD  

)exp()()(')(/)(' tjtttdttd ωKKEK +=   (3) 

where the elements of the vector Ki’=E{λi(t)R(t,ω)*} [15], 
and R(t,ω) is the Fourier transform of a t+τ-segment of the 
noise waveform. To solve the system in (3), we need to 
calculate the time-varying transfer functions from the noise 
source χ(t) to the components of r(t), as defined in (2). To 
obtain a numerical solution, (2) has to be discretized in time 
using a suitable scheme, such as any linear multi-step method, 
or a Runge-Kutta method. If backward Euler is applied to (2), 
the differential Lyapunov matrix equation is written in a 



special form referred to as the continuous-time algebraic 
Lyapunov matrix equation 

0)()( =++ T
rr

T
rrrr tt BBEKKE    (4) 

K (t) at time point tr is calculated by solving the system in 
(4). In the circuit analysis, the matrix Er is, in general, not a 
full-rank matrix; it may have zero rows and columns, and, 
similarly, the node equation corresponding to this node will 
not contain any time-derivatives. Consequently, we rewrite (4) 
as a sparse linear matrix-vector system in standard form and 
solve it with adjusted alternating direction method  
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for iterates i = 1,2,… This method generates a sequence of 
matrices K i, which converges fast towards the solution for 
sparse matrices with small bandwidth [16], provided that the 
iteration shift parameters γi are chosen (sub)optimally. Since 
iteration starts with K 0=0, K i will have rank at most i×n, 
where n is the number of vectors in Br. As a result, a sequence 
of matrices K i needs only to be represented by less than i×n 
vectors.  

III.  EXPERIMENTAL RESULTS 

The proposed method allows for any deterministic neuron 
model, whose neural conductance is described by a Markov 
process, to be converted into an equivalent stochastic version 
without involving any heuristics on the choice of the 
parameters for extra noise sources. The covariance matrix is 
periodic with the same period as either the input signal (e.g., 
translinear amplifier) or the clock (in sampled data systems). 
Moreover, with the proposed method, it is also possible to 
compute all the cross-correlations between any electrical 
quantity and any stochastic source. This makes it possible for 
the designer to determine the fundamental limit of the 
system’s dynamic range, so that design efforts can be 
addressed to the most critical section of the circuit and avoid 
deteriorating power and chip area by overdesign. All the 
experimental results are carried out on a single processor 
Ubuntu Linux 9.10 system with Intel Core 2 Duo CPUs 2.66 
GHz processor and 6 GB of memory. The proposed method 
and all sparse techniques have been performed in a numerical 
computing environment [17].  

In time domain, a widespread approach for noise simulation 
is Monte Carlo (MC) analysis. However, accurately 
determining the noise requires a large number of simulations, 
so consequently, the Monte Carlo based methods become cpu-
time consuming in complex, multichannel neural interface. 
The time series representation of an neuron signal at the 
preamplifier’s input (Figure 2) are composed of a spike burst, 
plus additive Gaussian white noise (Figure 3, grey area with 
1000 randomly selected neural channel compartments and 
black area with filtered out predicted bias from the estimated 
variance σ2). Difference in standard deviation of the proposed 
method vs. Monte Carlo analysis for 1000 iterations is within 

5%; cpu-time is reduced from 2 hours to 46 sec for 25 ms of 
model time. Figure 4 illustrates the number of iteration steps. 
After low- and high-pass filtering and amplification, the noisy 
neural signal is sampled with SAR A/D converter. An 
example of the time-domain noise estimation and noise power 
spectral density at the output of the low-pass filter is 
illustrated in Figure 5 and Figure 6, respectively. For 
frequencies higher than ~10 kHz, capacitances at the interface 
form the high-frequency pole and shape both the signal and 
the noise spectrum; the noise is low-pass filtered to the 
recording amplifier inputs. The interface’s input equivalent 
noise voltage decreases as the gain across the amplifying 
stages increase (Figure 7), e.g. the ratio of the square of the 
signal power over its noise variance can be expressed as 
SNR=FΣ

2/(σ2
neural+σ

2
electrode+Σi(ΠjGj

-1)σ2
amp,i), where FΣ

 is the 
total signal power, 

 
σ

2
amp,i represents the variance of the noise 

added by the ith amplification stage with gains Gj, σ
2
electrode  is 

the variance of the electrode and σ
2
neural is variance of the 

biological neural noise. The observed SNR of the system also 
increases as the system is isomorphically scaled up, which 
suggests a fundamental trade-off between SNR and speed of 
the system. 
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Figure 2: Nominal (without noise) voltage trace of neuron cell activity; the 

complex spike burst is followed by a pause in spike activity. 
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Figure 3: Statistical voltage trace of neuron cell activity; grey area - 

voltage traces from 1000 randomly selected neural channel compartments, 
black area – expected voltage trace. 

0 5 10 15 20 25 30 35
10

-20

10
-15

10
-10

10
-5

10
0

N
or

m
al

iz
ed

 r
es

id
ua

l n
or

m

Iteration steps  
Figure 4: Stopping criterion: maximal number of iteration steps.  
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Figure 5: Noise amplitude in time-domain at the output of the low-pass 

filter; in comparison with 1000 Monte Carlo trials, the accuracy is within 
3.2% with 21-fold cpu-time reduction. 
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Figure 6: Noise PSD at the output of the low-pass filter. 
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Figure 7: Spectral signature of SAR A/D converter-two tone test; black 

area – spectral content with nominal gain, grey area – spectra with 20% gain 
reduction, equivalent to 4 LSB loss in the dynamic range. 

 

Design Area   SNR (100Hz-10kHz) [dB]/channel 

 
 

[mm2] 
WCD 

slow, nom, fast [dB] 
MC 
[dB] 

SNA 
rel. 

t(cpu) 
rel. 

LNA 0.096 58.5, 60.9, 62.5 58.9 4.3 35.4 

LPF 0.052 57.1, 58.9, 59.6 58.1 3.2 21.7 

HPF 0.066 56.3, 58.2, 59.7 56.9 4.1 23.4 

PGA 0.058 59.3, 60.7, 61.4 60.2 5.6 43.4 
SARcomp 0.036 56.7, 58.7, 59.4 57.4 2.9 17.2 

RDAC 0.074 57.9, 60.7, 61.6 59.3 6.2 24.6 
SARlogic 0.042 62.5, 64.6, 65.6 63.7 4.3 32.3 
Total 0.424 55.4, 57.3, 58.3 56.9 6.4 38.8 

Average    4.6 29.6 

TABLE I– SUMMARY OF THE ALGORITHM PERFORMANCE 

In Table 1, SNR/channel estimated with worst-case analysis 
(WCD) and 1000 Monte Carlo (MC) iterations is compared 
across the neural interface circuits with the proposed 
stochastic noise analysis (SNA). Our approach allows large 
cpu-time reduction, ranging from 17-fold to 43-fold, with 29-
fold on average. Difference in standard deviation of SNA vs. 
Monte Carlo analysis is less than 4.7% on average. 

IV.  CONCLUSION 

In this paper, we solve the set of linear time-varying 
equations, including the noise content description to find the 
steady state value of the time-varying variance matrix. The 
variance matrix is periodic with the same period as either the 
input signal (e.g., translinear amplifier) or the clock (in 
sampled data systems). Moreover, we compute all the cross-
correlations between any electrical quantity and any stochastic 
source and compute noise spectral density. In a neural 
interfaces with large biological noise, this makes it 
conceivable to determine the limit of the system’s dynamic 
range, and avoid deteriorating power and chip area by 
overdesign.  
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