
Iterative Learning Cascaded Multiclass Kernel Based
Support Vector Machine for Neural Spike Data Classification

Amir Zjajo, Rene van Leuken

Circuits and Systems Group
Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands

Abstract—In this paper, we develop an iterative learning

framework based on multiclass kernel support vector machine
(SVM) for adaptive classification of neural spikes. For efficient
algorithm execution, we transform a multiclass problem with the
Kesler’s construction and extend iterative greedy optimization
reduced set vectors approach with a cascaded method. Since
obtained classification function is highly parallelizable, the
problem is sub-divided and parallel units are instantiated for the
processing of each sub-problem via energy-scalable kernels. After
partition of the data into disjoint subsets, we optimize the data
separately with multiple SVMs. We construct cascades of such
(partial) approximations and use them to obtain the modified
objective function, which offers high accuracy, has small kernel
matrices and low computational complexity.

I. INTRODUCTION
The high density of neurons in neurobiological tissue

require a large number of recording electrodes to be implanted
into relevant cortical regions for accurate representation of
neural activity in freely moving subjects (e.g., for spatially
broad analysis of neuronal synchronization), and to allow the
location controllability of the recording sites [1]. Monitoring
the activity of large number of neurons is a prerequisite for
understanding the cortical structures and can lead to a better
comprehension of severe brain disorders, such as Alzheimer’s
and Parkinson’s diseases, epilepsy, autism and psychiatric
disorders [2] or to reestablish sensory (e.g. vision, hearing) or
motor (e.g. movement, speech) functions [3]. However, very
frequently an electrode records the action potentials from
multiple surrounding neurons (e.g. due to the background
activity of other neurons, slight perturbations in electrode
position or external electrical or mechanical interference, etc.),
and the recorded waveform/spikes consist of the superimposed
potentials fired from these neurons.

The ability to distinguish spikes from noise [4], and to
distinguish spikes from different sources from the
superimposed waveform, therefore depends on both the
discrepancies between the noise-free spikes from each source
and the signal-to-noise level (SNR) in the recording system.
The time occurrences of the action potentials emitted by the
neurons close to the electrode are detected, depending on the
SNR, either by voltage thresholding with respect to an
estimation of the noise amplitude in the signal or with a more
advanced technique, such as continuous wavelet transform [5].

After the waveform alignment, to simplify the classification
process, a feature extraction step, such as principal component
analysis (PCA) [6] or wavelet decomposition [7] characterizes
detected spikes and represent each detected spike in a reduced
dimensional space, i.e. for a spike consisting of n sample
points, the feature extraction method produces m variables
(m<n), where m is the number of features. Based on these
features the spikes are classified into m-dimensional clusters
by k-means [8], expectation maximization (EM) [9], template
matching [10], Bayesian clustering [11] and artificial neural
network (ANN) with each cluster corresponding to the spiking
activity of a single neuron.

The support vector machine (SVM) has been introduced to
bioinformatics and spike classification/sorting [12]-[14]
because of its excellent generalization, sparse solution and
concurrent utilization of quadratic programming, which
provides global optimization. This absence of local minima is
a substantial difference from the artificial neural network
classifiers. Like ANN classifiers, applications of SVMs to any
classification problem require the determination of several
user-defined parameters, e.g. choice of an appropriate kernel
and related parameters, determination of regularization
parameter (i.e. C) and a appropriate optimization technique.
Correspondingly, SVM applies the structure risk minimization
instead of the empirical risk minimization and solves the
problems of non-linear, dimensionality curse efficiently.
However, the methods [12]-[14] could not identify multiclass
neural spikes nor could they decompose overlapping neural
spikes resulting from variable triggering of data collection
(e.g. due to noise or other spike events leading to premature or
delayed waveform). Recording multiple spikes on a specific
electrode can also create complex sums of neuron waveforms
[15].

In this paper, we develop a neural spike classification
framework based on multiclass kernel SVM that is able to
accurately identify overlapping neural spikes even for low
SNR. For efficient algorithm execution, we transform the
multiclass problem with the Kesler’s construction and extend
iterative greedy optimization reduced set vectors approach
with a cascaded method. The implementation results show that
a significant gain on throughput can be obtained, while
classification rate of the proposed method consistently
outperforms benchmarked methods over the entire range of
SNRs tested. This research was supported in part by the European Union and the Dutch

government as part of the CATRENE program under Heterogeneous
INCEPTION project.

978-1-4799-6926-5/15/$31.00 ©2015 IEEE

#N

back-end signal processing front-end neural interface

digital signal processing system D/A converter reconstruction filter stimulator
electrode

K K

#K #K

#N

A/D converter low noise
amplifier

band-pass filter

LNA

#N

N N N N

recording
electrode

spike
detection

classification
(ex. SVM)

feature
extraction

Figure 1: Block diagram of a brain-machine interface (BMI) with N-channel front-end neural recording interface and back-end signal processing.

II. MULTICLASS SVM CLASSIFICATION FRAMEWORK
A. Architectural Overiew of a Multichannel Neural Interface

With an increase in the range of applications and their
functionalities, neuroprosthetic devices are evolving to a
closed-loop control system [16] composed of a front-end
neural recording interface and a back-end neural-signal
processing. The brain-machine interface (BMI) architecture
includes, additionally, a micro-stimulation module to apply
stimulation signals to the brain neural tissues. The data
acquired by the recording electrodes in brain-machine
interface is conditioned and processed using analog circuits as
illustrated in Figure 1. As a result of the small amplitude of
neural signals and the high impedance of the electrode tissue
interface, low-noise amplification (LNA) and band-pass
filtering of the neural signals is performed before the signals
are digitized by an analog to digital converter (A/D converter).
The A/D converter output containing the time-multiplexed
neural signals is fed to a back-end signal processing unit,
which provides additional filtering and executes a spike
detection. Threshold crossings of a local energy measurement
[5] are used to detect spikes. A frequency-shaping filter
significantly attenuates the low frequency noise and helps
differentiating similar spikes from different neurons. The
feature extraction based on maximum and minimum values of
spike waveforms first derivatives [17] is employed due to its
small computation and little memory requirement while
preserving high information score. Neural spikes are classified
with multi-class support vector machine. The relevant
information is then transmitted to an outside receiver through
the transmitter or used for K-channel stimulation in a closed-
loop framework.

B. Multiclass Kernel SVM Training
The support vector machine is a linear classifier in the

parameter space; nevertheless it becomes a nonlinear classifier
as a result of the nonlinear mapping of the space of the input
patterns into the high dimensional feature space. The classifier
operations can be combined to realize variety of multi-class
[18] and ensemble classifiers (e.g., classifier trees and
adaptive boosting [19]). Instead of creating many binary
classifiers to determine the class labels, we solve a multiclass
problem directly [20] by modifying the binary class objective
function and adding a constraining it for every class. The
modified objective function allows simultaneous computation
of multiclass classification [21].

Let us consider labelled training spike trains of N data
points {yk

(i), xk}k=1,i=1
k=N,i=m, where xk is the kth input pattern

from n-dimensional space Rn and yk
(i) denotes the output of the

ith output unit for pattern k, i.e. approach very similar to ANN
methodology. The m outputs can encode q=2m different
classes. The training procedure of the SVM corresponds to a
convex optimization and amounts to solving a constrained
quadratic optimization problem (QP); the solution found is,
thus, guaranteed to be the unique global minimum of the
objective function. To maximize the margin of y(x), and b
are chosen such that they minimize the nearest integer || ||
subject to the optimization problem formulated as [22]

= ==
++

=

N

k

m

i
ik

m

i
ii

ikii
m

LSib

Cb

bJ
kii

1 1
,

1

22
2

,
)(

,,,

||||
2
1min

),,(min

ξω

ξω
ξω (1)

subject to the equality constraints

=−≥+

=−≥+

=−≥+

Nkbxy

Nkbxy

Nkbxy

mkmkm
T
m

m
k

kk
T

k

kk
T

k

,,1 ,1])([

,,1 ,1])([

,,1 ,1])([

,
)(

2,222
)2(

1,111
)1(

ξϕω

ξϕω

ξϕω
 (2)

where is a matrix of normal vectors (perpendicular to the
hyperplane e.g. defined as x+b=0), b is vector of biases, C>0
is the regularization constant, is a vector of slack variables
used to relax the inequalities for the case of non-separable
data. The sum i,k k,i is the cost function of spike trains whose
distance to the hyperplane is less than margin 1/|| ||. In [23] is
demonstrated that (1) is an acceptable formulation in terms of
generalization errors though an additional term b2/2 added to
the objective. To solve the optimization problem we use the
Karush-Kuhn-Tucker theorem [24]. We add a dual set of
variables, one for each constraint and obtain the Lagrangian of
the optimization problem (1)

}1])([{-

);,,(

,
1

)(
,

)(

,,

ik

N

k
iki

T
i

i
kik

m
LS

ikikii

bxyJ

b

ξϕωα

αξω

=

+−+

=(m)L
 (3)

which gives as conditions for optimality

=→=
∂
∂

=→=
∂
∂

=→=
∂
∂

=

=

 0

 00

)(0

,,
,

1

)(

1
,

1

1

)(
,

1

ikik
ik

i
k

N

k
ik

i

N

k
ki

i
kiki

i

y
b

xy

γξα
ξ

α

ϕαω
ω

L

L

L

 (4)

for k=1,…,N and i=1,…,m. The offset of the hyperplane
from the origin is determined by the parameter b/|| ||. The
function (.) is a nonlinear function, which maps the input
space into a higher dimensional space. To avoid working with
the high-dimensional map , we instead choose a kernel
function by defining the dot-product in Hilbert space

),()()(kk
T xxxx ψϕϕ = (5)

enabling us to treat nonlinear problems with principally
linear techniques. Formally, is a symmetric, positive semi-
definite Mercer kernel; the only condition required is that the
kernel satisfy a general positivity constraint [24].

To allow for mislabeled examples a modified maximum
margin technique is employed [25]. If there exists no
hyperplane x+b=0 that can divide different classes, the
objective function is penalized with non-zero slack variables

i. The modified maximum margin technique than finds a
hyperplane that separates the training set with a minimal
number of errors and the optimization becomes a trade-off
between a large margin and a small error penalty . The
maximum margin hyperplane and consequently the
classification task is than only a function of the support
vectors

0 ,,,1 ,0| s.t.

),(2/1

),(;(max

1

1,1

1

==≤≤∈

−

=

=

==

N

k
kkk

m

N

lk
lklklk

N

k
k

lkk

yNkCR

xxyy

xx
k

ααα

ααψα

ψα
α
Q

(6)

where k are weight vectors. The QP optimization task in
(6) is solved efficiently using sequential minimal optimization,
i.e. by constructing the optimal separating hyperplane for the
full data set [26]. Typically, many k go to zero during
optimization, and the remaining xk corresponding to those k>0
are called support vectors. To simplify notation, we assume
that all non-support vectors have been removed, so that Nx is
now the number of support vectors, and k >0 for all k. The
resulting classification function f(x) in (6) has the following
expansion

=

+=
N

k
kkk bxxyxf

1
),(sgn)(ψα (7)

where the support vector machine classifier uses the sign of
f(x) to assign a class label y to the object x [27].

The complexity of the computation of (7) scales with the
number of support vectors. To simplify the kernel classifier
trained by the SVM, we approximate an input pattern xk∈R

(using (7)), e.g. = k (xk) by a reduced set vectors zi∈R
e.g. ’= k (zk), k∈R. where the weight vector k∈R and the
vectors zi determine the reduced kernel expansion. The
problem of finding the reduced kernel expansion can be stated
as the optimization task

= ==

=

⋅−⋅+

⋅=Ψ−Ψ

x zz

x

N

k

N

l
lklk

N

lk
lklk

N

lk
lklkzz

zxzz

xx

1 11,

1,,

2

,

)(2)(

)(min||'||min

ψβαψββ

ψαα
ββ (8)

Although is not given explicitly, (8) can be computed
(and minimized) in terms of the kernel and carried out over
both the zk and k. The reduced set vectors zk and the
coefficients l,k for a classifier fl(x) are solved by iterative
greedy optimization [28]

z

m

k
lkll Nlbzxxf ,,1 ,),(sgn)(

1
, =+=

=

ψβ (9)

For a given complexity (i.e. number of reduced set vectors)
the classifier provides the optimal greedy approximation of the
full SVM decision boundary; the first one is the one which,
using the objective function (8) is closest to the full SVM (7)
constrained to using only one reduced set vector.

C. Iterative Learning Cascaded Multiclass Kernel SVM
Classification

The transformation from the multiclass SVM problem in (1)
to the single class problem is based on the Kesler’s
construction [25],[27]. Resulting SVM classifier is composed
of the set of discriminant functions, which are computed as

+−⋅=
m

lk
m
k

k
kl bmlylxxxf)),(),(()()(δδβψ (10)

where the vector bj, m∈K is given by

−=
k m

k
m
kl mlylb)),(),((δδβ (11)

Since the data xk appears only in the form of dot products in
the dual form, we can construct the dot product (xk, zl) using
the Kronecker delta, i.e., (k, l)=1 for k=l, and (k, l)=0 for k l
and map it to a reproducing kernel Hilbert space such that the
dot product obtains the same value as the function . This
property allows us to configure the SVM classifier via various
energy-scalable kernels [29] for finding non-linear classifiers.
For (.,.) one typically has the following choices: (x,xk)=xk

Tx
(linear SVM); (x,xk)=(xk

Tx+1)d (polynomial SVM of degree
d); (x,xk)=tanh[xk

Tx-] sigmoid SVM); (x,xk)=exp{- ||x-
xk||2} (radial basis function (RBF) SVM); (x,xk)=exp{-||x-
xk||/(2 2)} exponential radial basis function (ERBF) SVM, and

(x,xk)=exp{-||x-xk||2/(2 2)} Gaussian RBF SVM, where , ,
and are positive real constants. The performance of different
kernel functions strongly depends on the characteristics of the
application data. Consequently, the choice of kernel functions
substantially affects the computational efficiency and memory
requirements [30].

The reduced set vectors approach allows us to reduce the
SVM complexity while maintaining accuracy. To increase the
performance even further, we extend iterative greedy
optimization reduced set vectors approach [28].

Accordingly, the reduced expansion is not evaluated at
once, but rather in a cascaded way, such that in most cases a
very small number of support vectors are applied. The
computation of classification function fl(x) involves matrix-
vector operations, which are highly parallelizable. Therefore,
the problem is segmented into smaller ones and parallel units
are instantiated for the processing of each sub-problem.
Consider a set of reduced set vectors classification functions
where the l-th function is an approximation with l vectors,
chained into a sequence. After partition of the data into
disjoint subsets, we iteratively train the SVM on subsets of the
original data set and combine support vectors of resulting
models to create new training sets [31]-[32]. A query vector is
then evaluated by every function in the cascade and if
classified negative the evaluation stops

,))(sgn())(sgn()(21, xfxfxf lc = (12)

where fc,l(x) is the cascade evaluation function of (10). In
other words, we bias each cascade level in a way that one of
the binary decisions is very confident, while the other is
uncertain and propagates the data point to the next, more
complex cascade level. Biasing of the functions f is done by
setting the parameter b to achieve a desired accuracy of the
function on an evaluation set.

When a run through the cascade is completed, we combine
the remaining support vectors of the final model with each
subset from the first step of the first run. Frequently a single
pass through the cascade produces satisfactory accuracy,
however, if the global optimum is to be reached, the result of
the last level is fed back into the first level to tests its fraction
of the input vectors, i.e. whether any of the input vectors have
to be incorporated into the optimization. If this is not valid for
all input layer support vectors, the cascade is converged to the
global optimum, else it proceeds with additional pass through
the network.

III. EXPERIMENTAL RESULTS
The test dataset is based on recordings from the human

neocortex and basal ganglia. The dataset is constructed by
combining three recordings, each containing the spiking
activity of a different single unit. This was achieved by
extracting the mean spike templates from the first two
recordings and embedding these into the third recording at
intervals corresponding to spike rates of 18 Hz and 20 Hz,
respectively. In this manner the test dataset has three distinct
spike clusters that are known but also contains realistic
background activity. Simulated neural data was input to RTL
simulations to obtain switching activity estimates for the
design. These estimates were then annotated into the synthesis
flow to obtain energy estimates for the digital spike-
classification module.

Instead of thresholding the raw signal, we detect spikes in a
more reliable way using threshold crossings of a local energy
measurement of the bandpass filtered signal [5] (Figure 2 and
Figure 3). The local energy threshold is equal to the squared
average standard deviation of the signal defined by the noise
properties of the recording channel and is equal to the minimal
SNR required to be able to distinguish two neurons. Multiple
single-unit spike trains are extracted from extracellular neural
signals recorded from microelectrodes, and the information
encoded in the spike trains is subsequently classified with
RBF SVM kernel as illustrative example.

0 400 600 800 1000 1200

-1

-0.5

0

0.5

1

Bandpass filtered signal (300-3000Hz)

Time [ms]

A
m

pl
itu

de

Figure 2: Spike detection from continuously acquired data, the y axis is

arbitrary; threshold (line) crossings of a local energy measurement with a
running window of 1ms.

0 400 600 800 1000 1200

-1

-0.5

0

0.5

1

Detected spikes

Time [ms]

A
m

pl
itu

de

Figure 3: Spike detection from continuously acquired data, the y axis is

arbitrary; detected spikes.

2

2

2

2

3

3

3
1

X1

X 2

SVMγ=5.12,σ2=1.72
RBF with 3 different classes

-5 -4 -3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

4

5

Classifier
spike 1
spike 2
spike 3

Figure 4: The SVM separation hypersurface for the RBF kernel.

10 12 14 16 18 20 22 24 26 28 30
50

55

60

65

70

75

80

85

90

95

100

SNR [dB]

A
cc

ur
ac

y
[%

]

Mahalanobis

PCA

SVM
Template Matching

Euclidean

Figure 5: Effect of SNR on single spike sorting accuracy of the BMI system.

10 12 14 16 18 20 22 24 26 28 30
50

55

60

65

70

75

80

85

90

95

100

SNR [dB]

A
cc

ur
ac

y
[%

]

Euclidean

Mahalanobis

PCA
SVM

Templeate Matching

Figure 6: Effect of SNR on overlapping spikes of three classes on sorting
accuracy of the BMI system.

10 100 200 300 400
10

-15

10
-10

10
-5

10
0

support vectors

lo
g

no
rm

al
iz

ed
 e

rr
or

Figure 7: Log normalized error in reduced set model order reduction

versus number of support vectors.

Each neuron action potential waveform is detected from a
multiunit extracellular recording and assigned to one specific
unit according to their waveform features. Since this
procedure involve a substantial amount of error in the spike
trains, and particularly when the background noise level is
high, we measured testing classification error, training
classification error, margin of the found hyperplane, and
number of kernel evaluations.

Figure 4 gives a three classes classification graphical
illustration, where the bold lines represent decision
boundaries.

For a correctly classified example x1, we have 1
(1)=0 and

1
(2)=0, i.e., no loss counted, since both 1,2 and 1,3 are

negative. On the other hand, for an example x2 that violates
two margin bounds (2,2, 2,3>0), both methods generate a loss.
The algorithm converges very fast at first steps and slows
down as the optimal solution is approached. However, almost
the same classification error rates were obtained for all the
parameters =[10-2,5×10-3,10-3], indicating that to find good
classifier we do not need the extremely precise solution with

0. The SVM performance is sensitive to hyper parameter
settings, e.g., the settings of the complexity parameter C and
the kernel parameter for the Gaussian kernel. As a
consequence, hyper parameter tuning with grid search
approach is performed before the final model fit. More
sophisticated methods for hyper parameter tuning are available
as well [33].

The SVM spike sorting performance has been summarized
and benchmarked (Figure 5) versus four different, relatively
computationally-efficient methods for spike sorting, e.g.
template matching, principle component analysis,
Mahalanobis and Euclidean distance. The performance is
quantified using the effective accuracy, e.g. total spikes
classified versus spikes correctly classified (excluding spike
detection). The source of spike detection error is either the
false inclusion of a noise segment as a spike waveform or the
false omission of spike waveforms. These errors can be easily
modeled by the addition or removal of spikes at random
positions in time, so that the desired percentage of error ratio
is obtained. In contrast, care should be taken in modeling
spike classification errors, since an error in one unit may or
may not cause an error in another unit. In all methods the
suitable parameters are selected with which better
classification performance are obtained. The SVM classifier
consistently outperforms benchmarked methods over the
entire range of SNRs tested, although it only exceeds the
Euclidean distance metric by a slight margin reaching an
asymptotic success rate of ~ 97%. The different SNRs in BMI
have been obtained by superimposing attenuated spike
waveforms such as to mimic the background activity observed
at the electrode. If we increase the SNR of the entire front-end
brain-machine interface, the spike sorting accuracy increases
by up to 45% (depending on spike sorting method used).
Similarly, the accuracy of the spike sorting algorithm increase
with A/D converter resolution, although it saturates beyond 5-
6 bit resolution, ultimately limited by the SNR. However,
since the amplitude of the observed spike signals can vary,
typically, by one order of magnitude, additional resolution is
needed (i.e. 2-3 bit), if the amplification gain is fixed.
Additionally, increasing the sampling rate of A/D converter
improve spike sorting accuracy, since this captures finer
features further differentiating the signals.

The sorting accuracy of the spike waveforms, which overlap
at different sample points is illustrated in Figure 6. The correct
classification rate of the proposed method is on average 4%-
8% larger than that of other four methods.

If the training data contains the spike waveforms appearing
in the process of complex spike bursts, we classify other
distorted spikes generated by the bursting neurons firstly
before resolving the problem of complex spike bursts partially.
The performance of the four other methods is limited if the
distribution of the background noise is non-Gaussian or if the
multiple spike clusters are overlapped.

The number of support vectors required is partly governed
by the complexity of the classification task. As the SNR
decreases more support-vectors are needed in order to define a
more complex decision boundary. For our dataset, the number
of support-vectors required is within the range of 150-250,
which is further reduced to 50-75 (for =10-3) by an adapted
reduced set model order reduction technique (Figure 7).

IV. CONCLUSION
The support vector machine has been introduced to

bioinformatics and spike classification/sorting because of its
excellent generalization, sparse solution and concurrent
utilization of quadratic programming. In this paper, we
develop a neural spike classification framework based on
multiclass kernel SVM that is able to accurately identify
overlapping neural spikes even for low SNR. As a result, the
proposed method makes it feasible to successfully identify
neural spikes, and avoid deteriorating power and chip area by
overdesign.

REFERENCES
[1] M.A. Lebedev, M.A.L. Nicolelis, “Brain-machine interfaces: Past,

present and future,” Trends in Neurosciences, vol. 29, no. 9, pp. 536-
546, 2006.

[2] G. Buzsaki, “Large-scale recording of neuronal ensembles,” Nature
Neuroscience, vol. 7, pp. 446-451, 2004.

[3] F.A. Mussa-Ivaldi, L.E. Miller, “Brain-machine interfaces:
Computational demands and clinical needs meet basic neuroscience,”
Trends in Neuroscience, vol. 26, no. 6, pp. 329-334, 2003.

[4] K.H. Lee, N. Verma, “A low-power processor with configurable
embedded machine-learning accelerators for high-order and adaptive
analysis of medical-sensor signals”, IEEE Journal of Solid-State
Circuits, vol. 48, no. 7, pp 1625-1637, 2013.

[5] K.H. Kim, S.J. Kim, “A wavelet-based method for action potential
detection from extracellular neural signal recording with low signal-to-
noise ratio,” IEEE Transactions on Biomedical Engineering, vol. 50, pp.
999-1011, 2003.

[6] D.A. Adamos, E.K. Kosmidis, G. Theophilidis, “Performance evaluation
of pca-based spike sorting algorithms,” Computer Methods and
Programs in Biomedicine, vol. 91, pp. 232-244, 2008.

[7] R.Q. Quiroga, Z. Nadasdy, Y. B. Shaul, “Unsupervised spike detection
and sorting with wavelets and superparamagnetic clustering,” Neural
Computation, vol. 16, pp. 1661-1687, 2004.

[8] S. Takahashi, Y. Anzai, Y. Sakurai, “A new approach to spike sorting
for multi-neuronal activities recorded with a tetrode-how ICA can be
practical,” Neuroscience Research, vol. 46, pp. 265-272, 2003.

[9] F. Wood, M. Fellows, J. Donoghue, M. Black, “Automatic spike sorting
for neural decoding,” Proceedings of IEEE Conference on Engineering
in Medicine and Biological Systems, pp. 4009-4012, 2004.

[10] C. Vargas-Irwin, J.P. Donoghue, “Automated spike sorting using density
grid contour clustering and subtractive waveform decomposition,”
Journal of Neuroscience Methods, vol. 164, no. 1, pp. 1-18, 2007.

[11] J. Dai, et al. “Experimental study on neuronal spike sorting methods,”
IEEE Future Generation Communication Networks Conference, pp.
230-233, 2008.

[12] R.J. Vogelstein, K. Murari, P.H. Thakur, G. Cauwenberghs, S.
Chakrabartty, C. Diehl, “Spike sorting with support vector machines”,
Proceedings of Annual International Conference on IEEE Engineering
in Medicine and Biology Society, pp. 546-549, 2004.

[13] K.H. Kim, S.S. Kim, S.J. Kim, “Advantage of support vector machine
for neural spike train decoding under spike sorting errors”, Proceedings
of Annual International Conference on IEEE Engineering in Medicine
and Biology Society, pp. 5280-5283, 2005.

[14] R. Boostani, B. Graimann, M.H. Moradi, G. Pfurtscheller, “A
comparison approach toward finding the best feature and classifier in
cue-based BCI”, Medical and Biological Engineering Computing, vol.
45, no. 403-412, 2007.

[15] G. Zouridakis, D.C. Tam, “Identification of reliable spike templates in
multi-unit extracellular recordings using fuzzy clustering,” Computer
Methods and Programs in Biomedicine, vol. 61, no. 2, pp. 91-98, 2000.

[16] B. Gosselin, “Recent advances in neural recording microsystems,”
Sensors, vol. 11, no. 5, pp. 4572-4597, 2011.

[17] T. Chen, Z. Yang , W. Liu, L. Chen, “NEUSORT 2.0: A multiple-
channel neural signal processor with systolic array buffer and channel-
interleaving processing schedule,” Proceedings of Annual International
Conference on IEEE Engineering in Medicine and Biology Society, pp.
5029-5032, 2008.

[18] E. Shih, J. Guttag, “Reducing energy consumption of multi-channel
mobile medical monitoring algorithms,” Proceedings of International
Workshop on Systems and Networking Support for Healthcare and
Assisted Living Environments, no. 15, pp. 1-7, 2008.

[19] R.E. Schapire, “A brief introduction to boosting,” Proceedings of
International Joint Conference on Artificial Intelligence, pp. 1401-1406,
1999.

[20] B. Schölkopf, A.J. Smola, Learning with kernels - support vector
machines, regularization, optimization and beyond, Cambridge, MA:
The MIT Press, 2002.

[21] C.-W. Hsu, C.-J. Lin, “A comparison of methods for multi-class support
vector machines,” IEEE Transactions on Neural Networks, vol. 13, pp.
415-425, 2002.

[22] O. Mangasarian, D. Musicant, “Successive overrelaxation for support
vector machines,” IEEE Transactions on Neural Networks, vol. 10, no.
5, pp. 1032-1037, 1999.

[23] C.-W. Hsu, C.-J. Lin, “A simple decomposition method for support
vector machines,” Machine Learning, vol. 46, pp. 291-314, 2002.

[24] V.N. Vapnik, Statistical learning theory, John Wiley & Sons, 1998.
[25] V. Franc, V. Hlavac, “Multi-class support vector machine”, Proceedings

of IEEE International Conference on Pattern Recognition, vol. 2, pp.
236-239, 2002.

[26] J. Platt, Fast training of support vector machines using sequential
minimal optimization, in Advances in kernel methods: Support vector
learning, chapter, Cambridge, MA: The MIT Press, 1999.

[27] R.O. Duda, P.E. Hart, D.G. Stork, Pattern classification, John Wiley &
Sons, 2000.

[28] B. Scholkopf, P. Knirsch, C. Smola, A. Burges, Fast approximation of
support vector kernel expansions, and an interpretation of clustering as
approximation in feature spaces, in P. Levi, M. Schanz, R.J. Ahler, F.
May, editors, Mustererkennung 1998-20, pp. 124-132, Berlin, Germany,
1998. Springer-Verlag.

[29] H. Lee, S.-Y. Kung, N. Verma, “Improving kernel-energy tradeoffs for
machine learning in implantable and wearable biomedical applications,”
Proceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing, pp. 1597-1600, 2011.

[30] K.-H. Lee, N. Verma, “A low-power processor with configurable
embedded machine-learning accelerators for high-order and adaptive
analysis of medical-sensor signals,” IEEE Journal of Solid-State
Circuits, vol. 48, no. 7, pp. 1625-1637, 2013.

[31] C.J. Burges, “Simplified support vector decision rules,” International
Conference on Machine Learning, pp. 71-77, 1996.

[32] S.R.M. Ratsch, T. Vetter, “Efficient face detection by a cascaded
support vector machine expansion,” A Royal Society of London
Proceedings Series, vol. 460, pp. 3283-3297, 2004.

[33] P. Koch, B. Bischl, O. Flasch, T. Bartz-Beilstein, W. Konen, “On the
tuning and evolution of support vector kernels,” Evolutionary
Intelligence, vol. 5, pp. 153-170, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

