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Abstract—In this paper, we develop an iterative learning 

framework based on multiclass kernel support vector machine 
(SVM) for adaptive classification of neural spikes. For efficient 
algorithm execution, we transform a multiclass problem with the 
Kesler’s construction and extend iterative greedy optimization 
reduced set vectors approach with a cascaded method. Since 
obtained classification function is highly parallelizable, the 
problem is sub-divided and parallel units are instantiated for the 
processing of each sub-problem via energy-scalable kernels. After 
partition of the data into disjoint subsets, we optimize the data 
separately with multiple SVMs. We construct cascades of such 
(partial) approximations and use them to obtain the modified 
objective function, which offers high accuracy, has small kernel 
matrices and low computational complexity. 

I. INTRODUCTION 
The high density of neurons in neurobiological tissue 

require a large number of recording electrodes to be implanted 
into relevant cortical regions for accurate representation of 
neural activity in freely moving subjects (e.g., for spatially 
broad analysis of neuronal synchronization), and to allow the 
location controllability of the recording sites [1]. Monitoring 
the activity of large number of neurons is a prerequisite for 
understanding the cortical structures and can lead to a better 
comprehension of severe brain disorders, such as Alzheimer’s 
and Parkinson’s diseases, epilepsy, autism and psychiatric 
disorders [2] or to reestablish sensory (e.g. vision, hearing) or 
motor (e.g. movement, speech) functions [3]. However, very 
frequently an electrode records the action potentials from 
multiple surrounding neurons (e.g. due to the background 
activity of other neurons, slight perturbations in electrode 
position or external electrical or mechanical interference, etc.), 
and the recorded waveform/spikes consist of the superimposed 
potentials fired from these neurons.  

The ability to distinguish spikes from noise [4], and to 
distinguish spikes from different sources from the 
superimposed waveform, therefore depends on both the 
discrepancies between the noise-free spikes from each source 
and the signal-to-noise level (SNR) in the recording system. 
The time occurrences of the action potentials emitted by the 
neurons close to the electrode are detected, depending on the 
SNR, either by voltage thresholding with respect to an 
estimation of the noise amplitude in the signal or with a more 
advanced technique, such as continuous wavelet transform [5].  

After the waveform alignment, to simplify the classification 
process, a feature extraction step, such as principal component 
analysis (PCA) [6] or wavelet decomposition [7] characterizes 
detected spikes and represent each detected spike in a reduced 
dimensional space, i.e. for a spike consisting of n sample 
points, the feature extraction method produces m variables 
(m<n), where m is the number of features. Based on these 
features the spikes are classified into m-dimensional clusters 
by k-means [8], expectation maximization (EM) [9], template 
matching [10], Bayesian clustering [11] and artificial neural 
network (ANN) with each cluster corresponding to the spiking 
activity of a single neuron. 

The support vector machine (SVM) has been introduced to 
bioinformatics and spike classification/sorting [12]-[14] 
because of its excellent generalization, sparse solution and 
concurrent utilization of quadratic programming, which 
provides global optimization. This absence of local minima is 
a substantial difference from the artificial neural network 
classifiers. Like ANN classifiers, applications of SVMs to any 
classification problem require the determination of several 
user-defined parameters, e.g. choice of an appropriate kernel 
and related parameters, determination of regularization 
parameter (i.e. C) and a appropriate optimization technique. 
Correspondingly, SVM applies the structure risk minimization 
instead of the empirical risk minimization and solves the 
problems of non-linear, dimensionality curse efficiently. 
However, the methods [12]-[14] could not identify multiclass 
neural spikes nor could they decompose overlapping neural 
spikes resulting from variable triggering of data collection 
(e.g. due to noise or other spike events leading to premature or 
delayed waveform). Recording multiple spikes on a specific 
electrode can also create complex sums of neuron waveforms 
[15]. 

In this paper, we develop a neural spike classification 
framework based on multiclass kernel SVM that is able to 
accurately identify overlapping neural spikes even for low 
SNR. For efficient algorithm execution, we transform the 
multiclass problem with the Kesler’s construction and extend 
iterative greedy optimization reduced set vectors approach 
with a cascaded method. The implementation results show that 
a significant gain on throughput can be obtained, while 
classification rate of the proposed method consistently 
outperforms benchmarked methods over the entire range of 
SNRs tested. This research was supported in part by the European Union and the Dutch 

government as part of the CATRENE program under Heterogeneous 
INCEPTION project. 
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Figure 1: Block diagram of a brain-machine interface (BMI) with N-channel front-end neural recording interface and back-end signal processing.  

 

II. MULTICLASS SVM CLASSIFICATION FRAMEWORK 
A. Architectural Overiew of a Multichannel Neural Interface 

With an increase in the range of applications and their 
functionalities, neuroprosthetic devices are evolving to a 
closed-loop control system [16] composed of a front-end 
neural recording interface and a back-end neural-signal 
processing. The brain-machine interface (BMI) architecture 
includes, additionally, a micro-stimulation module to apply 
stimulation signals to the brain neural tissues. The data 
acquired by the recording electrodes in brain-machine 
interface is conditioned and processed using analog circuits as 
illustrated in Figure 1. As a result of the small amplitude of 
neural signals and the high impedance of the electrode tissue 
interface, low-noise amplification (LNA) and band-pass 
filtering of the neural signals is performed before the signals 
are digitized by an analog to digital converter (A/D converter). 
The A/D converter output containing the time-multiplexed 
neural signals is fed to a back-end signal processing unit, 
which provides additional filtering and executes a spike 
detection. Threshold crossings of a local energy measurement 
[5] are used to detect spikes. A frequency-shaping filter 
significantly attenuates the low frequency noise and helps 
differentiating similar spikes from different neurons.  The 
feature extraction based on maximum and minimum values of 
spike waveforms first derivatives [17] is employed due to its 
small computation and little memory requirement while 
preserving high information score. Neural spikes are classified 
with multi-class support vector machine. The relevant 
information is then transmitted to an outside receiver through 
the transmitter or used for K-channel stimulation in a closed-
loop framework. 

B. Multiclass Kernel SVM Training 
The support vector machine is a linear classifier in the 

parameter space; nevertheless it becomes a nonlinear classifier 
as a result of the nonlinear mapping of the space of the input 
patterns into the high dimensional feature space. The classifier 
operations can be combined to realize variety of multi-class 
[18] and ensemble classifiers (e.g., classifier trees and 
adaptive boosting [19]). Instead of creating many binary 
classifiers to determine the class labels, we solve a multiclass 
problem directly [20] by modifying the binary class objective 
function and adding a constraining it for every class. The 
modified objective function allows simultaneous computation 
of multiclass classification [21].  

 

Let us consider labelled training spike trains of N data 
points {yk

(i), xk}k=1,i=1
k=N,i=m, where xk is the kth input pattern 

from n-dimensional space Rn and yk
(i) denotes the output of the 

ith output unit for pattern k, i.e. approach very similar to ANN 
methodology. The m outputs can encode q=2m different 
classes. The training procedure of the SVM corresponds to a 
convex optimization and amounts to solving a constrained 
quadratic optimization problem (QP); the solution found is, 
thus, guaranteed to be the unique global minimum of the 
objective function. To maximize the margin of y(x),  and b 
are chosen such that they minimize the nearest integer || || 
subject to the optimization problem formulated as [22] 
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where  is a matrix of normal vectors (perpendicular to the 
hyperplane e.g. defined as x+b=0), b is vector of biases, C>0 
is the regularization constant,  is a vector of slack variables 
used to relax the inequalities for the case of non-separable 
data. The sum i,k k,i is the cost function of spike trains whose 
distance to the hyperplane is less than margin 1/|| ||. In [23] is 
demonstrated that (1) is an acceptable formulation in terms of 
generalization errors though an additional term b2/2 added to 
the objective. To solve the optimization problem we use the 
Karush-Kuhn-Tucker theorem [24]. We add a dual set of 
variables, one for each constraint and obtain the Lagrangian of 
the optimization problem (1) 
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which gives as conditions for optimality 
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for k=1,…,N and i=1,…,m. The offset of the hyperplane 
from the origin is determined by the parameter b/|| ||. The 
function (.) is a nonlinear function, which maps the input 
space into a higher dimensional space. To avoid working with 
the high-dimensional map , we instead choose a kernel 
function  by defining the dot-product in Hilbert space 

),()()( kk
T xxxx ψϕϕ =     (5) 

enabling us to treat nonlinear problems with principally 
linear techniques. Formally,  is a symmetric, positive semi-
definite Mercer kernel; the only condition required is that the 
kernel  satisfy a general positivity constraint [24]. 

To allow for mislabeled examples a modified maximum 
margin technique is employed [25]. If there exists no 
hyperplane x+b=0 that can divide different classes, the 
objective function is penalized with non-zero slack variables 

i. The modified maximum margin technique than finds a 
hyperplane that separates the training set with a minimal 
number of errors  and the optimization becomes a trade-off 
between a large margin and a small error penalty . The 
maximum margin hyperplane and consequently the 
classification task is than only a function of the support 
vectors 
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where k are weight vectors. The QP optimization task in 
(6) is solved efficiently using sequential minimal optimization, 
i.e. by constructing the optimal separating hyperplane for the 
full data set [26]. Typically, many k go to zero during 
optimization, and the remaining xk corresponding to those k>0 
are called support vectors. To simplify notation, we assume 
that all non-support vectors have been removed, so that Nx is 
now the number of support vectors, and k >0 for all k. The 
resulting classification function f(x) in (6) has the following 
expansion 
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where the support vector machine classifier uses the sign of 
f(x) to assign a class label y to the object x [27].  

The complexity of the computation of (7) scales with the 
number of support vectors. To simplify the kernel classifier 
trained by the SVM, we approximate an input pattern xk∈R 

(using (7)), e.g. = k (xk) by a reduced set vectors zi∈R 
e.g. ’= k (zk), k∈R. where the weight vector k∈R and the 
vectors zi determine the reduced kernel expansion. The 
problem of finding the reduced kernel expansion can be stated 
as the optimization task 
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Although  is not given explicitly, (8) can be computed 
(and minimized) in terms of the kernel and carried out over 
both the zk and k. The reduced set vectors zk and the 
coefficients l,k for a classifier fl(x) are solved by iterative 
greedy optimization [28] 
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For a given complexity (i.e. number of reduced set vectors) 
the classifier provides the optimal greedy approximation of the 
full SVM decision boundary; the first one is the one which, 
using the objective function (8) is closest to the full SVM (7) 
constrained to using only one reduced set vector. 

C. Iterative Learning Cascaded Multiclass Kernel SVM 
Classification 

The transformation from the multiclass SVM problem in (1) 
to the single class problem is based on the Kesler’s 
construction [25],[27]. Resulting SVM classifier is composed 
of the set of discriminant functions, which are computed as 
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where the vector bj, m∈K is given by 
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Since the data xk appears only in the form of dot products in 
the dual form, we can construct the dot product (xk, zl) using 
the Kronecker delta, i.e., (k, l)=1 for k=l, and (k, l)=0 for k l 
and map it to a reproducing kernel Hilbert space such that the 
dot product obtains the same value as the function . This 
property allows us to configure the SVM classifier via various 
energy-scalable kernels [29] for finding non-linear classifiers. 
For (.,.) one typically has the following choices: (x,xk)=xk

Tx 
(linear SVM); (x,xk)=(xk

Tx+1)d (polynomial SVM of degree 
d); (x,xk)=tanh[ xk

Tx- ] sigmoid SVM); (x,xk)=exp{- ||x-
xk||2} (radial basis function (RBF) SVM); (x,xk)=exp{-||x-
xk||/(2 2)} exponential radial basis function (ERBF) SVM, and 

(x,xk)=exp{-||x-xk||2/(2 2)} Gaussian RBF SVM, where , ,  
and  are positive real constants. The performance of different 
kernel functions strongly depends on the characteristics of the 
application data. Consequently, the choice of kernel functions 
substantially affects the computational efficiency and memory 
requirements [30].  

The reduced set vectors approach allows us to reduce the 
SVM complexity while maintaining accuracy. To increase the 
performance even further, we extend iterative greedy 
optimization reduced set vectors approach [28]. 



Accordingly, the reduced expansion is not evaluated at 
once, but rather in a cascaded way, such that in most cases a 
very small number of support vectors are applied. The 
computation of classification function fl(x) involves matrix-
vector operations, which are highly parallelizable. Therefore, 
the problem is segmented into smaller ones and parallel units 
are instantiated for the processing of each sub-problem. 
Consider a set of reduced set vectors classification functions 
where the l-th function is an approximation with l vectors, 
chained into a sequence. After partition of the data into 
disjoint subsets, we iteratively train the SVM on subsets of the 
original data set and combine support vectors of resulting 
models to create new training sets [31]-[32]. A query vector is 
then evaluated by every function in the cascade and if 
classified negative the evaluation stops 

,))(sgn())(sgn()( 21, xfxfxf lc =    (12) 

where fc,l(x) is the cascade evaluation function of (10). In 
other words, we bias each cascade level in a way that one of 
the binary decisions is very confident, while the other is 
uncertain and propagates the data point to the next, more 
complex cascade level. Biasing of the functions f is done by 
setting the parameter b to achieve a desired accuracy of the 
function on an evaluation set.  

When a run through the cascade is completed, we combine 
the remaining support vectors of the final model with each 
subset from the first step of the first run. Frequently a single 
pass through the cascade produces satisfactory accuracy, 
however, if the global optimum is to be reached, the result of 
the last level is fed back into the first level to tests its fraction 
of the input vectors, i.e. whether any of the input vectors have 
to be incorporated into the optimization. If this is not valid for 
all input layer support vectors, the cascade is converged to the 
global optimum, else it proceeds with additional pass through 
the network. 

III. EXPERIMENTAL RESULTS 
The test dataset is based on recordings from the human 

neocortex and basal ganglia. The dataset is constructed by 
combining three recordings, each containing the spiking 
activity of a different single unit. This was achieved by 
extracting the mean spike templates from the first two 
recordings and embedding these into the third recording at 
intervals corresponding to spike rates of 18 Hz and 20 Hz, 
respectively. In this manner the test dataset has three distinct 
spike clusters that are known but also contains realistic 
background activity. Simulated neural data was input to RTL 
simulations to obtain switching activity estimates for the 
design. These estimates were then annotated into the synthesis 
flow to obtain energy estimates for the digital spike-
classification module.  

 
 
 

Instead of thresholding the raw signal, we detect spikes in a 
more reliable way using threshold crossings of a local energy 
measurement of the bandpass filtered signal [5] (Figure 2 and 
Figure 3). The local energy threshold is equal to the squared 
average standard deviation of the signal defined by the noise 
properties of the recording channel and is equal to the minimal 
SNR required to be able to distinguish two neurons. Multiple 
single-unit spike trains are extracted from extracellular neural 
signals recorded from microelectrodes, and the information 
encoded in the spike trains is subsequently classified with 
RBF SVM kernel as illustrative example.  
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Figure 2: Spike detection from continuously acquired data, the y axis is 

arbitrary; threshold (line) crossings of a local energy measurement with a 
running window of 1ms. 
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Figure 3: Spike detection from continuously acquired data, the y axis is 

arbitrary; detected spikes. 
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Figure 4: The SVM separation hypersurface for the RBF kernel. 
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Figure 5: Effect of SNR on single spike sorting accuracy of the BMI system. 
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Figure 6: Effect of SNR on overlapping spikes of three classes on sorting 
accuracy of the BMI system. 
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Figure 7: Log normalized error in reduced set model order reduction 

versus number of support vectors. 

Each neuron action potential waveform is detected from a 
multiunit extracellular recording and assigned to one specific 
unit according to their waveform features. Since this 
procedure involve a substantial amount of error in the spike 
trains, and particularly when the background noise level is 
high, we measured testing classification error, training 
classification error, margin of the found hyperplane, and 
number of kernel evaluations.  

Figure 4 gives a three classes classification graphical 
illustration, where the bold lines represent decision 
boundaries.  

For a correctly classified example x1, we have 1
(1)=0 and 

1
(2)=0, i.e., no loss counted, since both 1,2 and 1,3 are 

negative. On the other hand, for an example x2 that violates 
two margin bounds ( 2,2, 2,3>0), both methods generate a loss. 
The algorithm converges very fast at first steps and slows 
down as the optimal solution is approached. However, almost 
the same classification error rates were obtained for all the 
parameters =[10-2,5×10-3,10-3], indicating that to find good 
classifier we do not need the extremely precise solution with 

0. The SVM performance is sensitive to hyper parameter 
settings, e.g., the settings of the complexity parameter C and 
the kernel parameter  for the Gaussian kernel. As a 
consequence, hyper parameter tuning with grid search 
approach is performed before the final model fit. More 
sophisticated methods for hyper parameter tuning are available 
as well [33].  

The SVM spike sorting performance has been summarized 
and benchmarked (Figure 5) versus four different, relatively 
computationally-efficient methods for spike sorting, e.g. 
template matching, principle component analysis, 
Mahalanobis and Euclidean distance. The performance is 
quantified using the effective accuracy, e.g. total spikes 
classified versus spikes correctly classified (excluding spike 
detection). The source of spike detection error is either the 
false inclusion of a noise segment as a spike waveform or the 
false omission of spike waveforms. These errors can be easily 
modeled by the addition or removal of spikes at random 
positions in time, so that the desired percentage of error ratio 
is obtained. In contrast, care should be taken in modeling 
spike classification errors, since an error in one unit may or 
may not cause an error in another unit. In all methods the 
suitable parameters are selected with which better 
classification performance are obtained. The SVM classifier 
consistently outperforms benchmarked methods over the 
entire range of SNRs tested, although it only exceeds the 
Euclidean distance metric by a slight margin reaching an 
asymptotic success rate of ~ 97%. The different SNRs in BMI 
have been obtained by superimposing attenuated spike 
waveforms such as to mimic the background activity observed 
at the electrode. If we increase the SNR of the entire front-end 
brain-machine interface, the spike sorting accuracy increases 
by up to 45% (depending on spike sorting method used). 
Similarly, the accuracy of the spike sorting algorithm increase 
with A/D converter resolution, although it saturates beyond 5-
6 bit resolution, ultimately limited by the SNR. However, 
since the amplitude of the observed spike signals can vary, 
typically, by one order of magnitude, additional resolution is 
needed (i.e. 2-3 bit), if the amplification gain is fixed. 
Additionally, increasing the sampling rate of A/D converter 
improve spike sorting accuracy, since this captures finer 
features further differentiating the signals. 

The sorting accuracy of the spike waveforms, which overlap 
at different sample points is illustrated in Figure 6. The correct 
classification rate of the proposed method is on average 4%-
8% larger than that of other four methods.  



If the training data contains the spike waveforms appearing 
in the process of complex spike bursts, we classify other 
distorted spikes generated by the bursting neurons firstly 
before resolving the problem of complex spike bursts partially. 
The performance of the four other methods is limited if the 
distribution of the background noise is non-Gaussian or if the 
multiple spike clusters are overlapped.  

The number of support vectors required is partly governed 
by the complexity of the classification task. As the SNR 
decreases more support-vectors are needed in order to define a 
more complex decision boundary. For our dataset, the number 
of support-vectors required is within the range of 150-250, 
which is further reduced to 50-75 (for =10-3) by an adapted 
reduced set model order reduction technique (Figure 7).  

IV. CONCLUSION 
The support vector machine has been introduced to 

bioinformatics and spike classification/sorting because of its 
excellent generalization, sparse solution and concurrent 
utilization of quadratic programming. In this paper, we 
develop a neural spike classification framework based on 
multiclass kernel SVM that is able to accurately identify 
overlapping neural spikes even for low SNR. As a result, the 
proposed method makes it feasible to successfully identify 
neural spikes, and avoid deteriorating power and chip area by 
overdesign. 
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