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In integrated circuits accurate runtime sensing of on-chip temperature is required to establish effi-
cient dynamic thermal management techniques. In this paper, we propose novel sensor allocation
and placement algorithm and thermal sensing technique for indirect temperature estimation at arbi-
trary locations. As the experimental results indicate, the runtime thermal estimation method reduces
temperature estimation errors by an order of magnitude.
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1. INTRODUCTION
The magnitude of thermal gradients and associated thermo-
mechanical stress increase further as VLSI designs move
into nanometer processes and multi-GHz frequencies.1

Higher temperature increases the risk of damaging the
devices and interconnects since major back-end and
front-end reliability issues including electro-migration,
time-dependent dielectric breakdown, and negative-bias
temperature instability have strong dependence on temper-
ature. Additionally, low power techniques such as dynamic
power management, clock gating, voltage islands, dual
VDD/VT and power gating may cause significant on-chip
thermal gradients and local hot spots due to different
clock/power gating activities and varying voltage scaling.
As a consequence, continuous thermal monitoring is nec-
essary to reduce thermal damage and increase reliabil-
ity. Built-in temperature sensors predict excessive junction
temperatures as well as the average temperature of a die
within design specifications. In order to maximize the cov-
erage, the thermal sensing devices are scattered across the
entire chip to meet the high-level die temperature control
requirements. This trend of multiple monitoring circuits is
evident in recent processors such as the POWER5, CELL,
Itanium, and Opteron processors.1–4 The sensors are net-
worked by an underlying infrastructure, which provides
the bias currents to the sensing devices, collects measure-
ments, and performs analog to digital signal conversion.
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Therefore, the supporting infrastructure is an on-chip ele-
ment at a global scale, growing in complexity with each
emerging processor design. It needs to span a large dis-
tance covering the entire processor core, networking an
increasing number of devices. The temperature sensors
for thermal monitoring of VLSI circuits should meet sev-
eral requirements including compatibility with the target
process with no additional fabrication steps, high accu-
racy, a small silicon area and low power consumption to
reduce the error caused by self-heating. Temperature sen-
sor based on time-to-digital-converter5 is constrained by
the large area and power overhead at the required sampling
rate. Temperature sensor operating in the sub-threshold
region6 is prone to dynamic variations as thermal sensi-
tivity increases by an order of magnitude when operating
in sub-threshold.7 Consequently, the majority of CMOS
temperature sensors are based on the temperature charac-
teristics of parasitic bipolar transistors.8 Although modern
temperature sensors achieve high level of accuracy,9 the
placement of these sensors in is constrained to areas where
there is enough spatial slack. Additionally, underlying chip
power density is highly random due to unpredictable work-
load, fabrication randomness and non-linear dependence
between temperature and circuit parameters. Increasing the
number of sensors could possible resolve this issue; nev-
ertheless the cost of adding a large number of sensors is
prohibitive. Moreover, even without considering the cost
of added sensors, other limitations such as additional chan-
nels for routing and input/output may not allow placement
of thermal sensors at the locations of interest.
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Several techniques have been proposed to solve the
problem of tracking the entire thermal profile based on
only a few limited sensor observations.10–16 Among these
techniques, the Kalman filter based methods are espe-
cially resourceful as such methods are capable of exploit-
ing the statistical properties of power consumption along
with sensor observations to estimate temperatures at all
chip locations during runtime, while simultaneously retain-
ing the possibility to incorporate associated sensor noise
caused by fabrication variability, supply voltage fluctua-
tion, cross coupling etc. However, existing Kalman fil-
ter based approaches imply a linear model ignoring the
nonlinear temperature-circuit parameters dependency or
employ a linear approximation of the system around the
operating point at each time instant. These approximations,
however, can introduce large errors in the true posterior
mean and covariance of the transformed (Gaussian) ran-
dom variable, which may lead to sub-optimal performance
and sometimes divergence of the filter.
In this paper, with the unscented Kalman filter, we

explicitly account for the nonlinear temperature-circuit
parameters dependency. Since we are considering the
spread of random variable, the technique tends to be more
accurate than Taylor series linearization employed in exist-
ing Kalman filter based approaches. As the experimental
results indicate, the runtime thermal estimation method
reduces temperature estimation errors by an order of mag-
nitude. Additionally, we propose a systematic optimiza-
tion technique for thermal sensor allocation and placement
based on the cutting plane method.
This paper is organized as follows: Section 2 focuses

on the design of compact, low power temperature sensor9

with high accuracy and wide temperature range. Section
3 introduces optimization algorithm for optimum temper-
ature sensor placement. In Section 4, thermal conduction
in integrated circuits and associated temperature estima-
tion method is described. Section 5 elaborates experimen-
tal results. Finally, Section 6 provides a summary and the
main conclusions.

2. TEMPERATURE SENSOR
To convert temperature to a digital value, a well-
defined temperature-dependent signal and a temperature-
independent reference signal are required. These quantities
can be derived utilizing exponential characteristics of bipo-
lar devices for both negative- and positive temperature
coefficient.17 For constant collector current, base-emitter
voltage Vbe of the bipolar transistors has negative temper-
ature dependence around room temperature. This negative
temperature dependence is cancelled by a proportional-to-
absolute temperature dependence of the amplified differ-
ence of two base-emitter junctions. These junctions are
biased at fixed but at unequal current densities result-
ing in the relation directly proportional to the absolute
temperature. This proportionality is, however, rather small

(0.1–0.25 mV/�C) and needs to be amplified to allow
further signal processing.

2.1. Non-Idealities of Bipolar Transistor
In CMOS process, both lateral and vertical (substrate) pnp
transistors can be used as temperature sensing devices. The
lateral transistors, however, have low current gains and
their exponential current voltage characteristic is limited to
a narrow range of currents.8 The substrate transistors have
reasonable current gains and high output resistance, but
their main limitation is the series base resistance, which
can be high due to the large lateral dimensions between the
base contact and the effective emitter region. To minimize
errors due to this base resistance, we limited the maximum
collector currents through the transistors to �A level. The
slope of the base-emitter voltage Vbe of the bipolar transis-
tors depends on process parameters and the absolute value
of the collector current. To obtain an overall accuracy of
± 1 �C a maximum spread of Vbe is limited to 900 �V
level and the maximum random voltage error in �Vbe to
60 �V. This spread is PTAT in nature and can be mitigated
by trimming, albeit at the expense of increased manufac-
turing costs. In this way, a single-point trim is enough to
compensate for process spread. Since intra-batch spread
is usually significantly less than inter-batch spread, batch
calibration offers a cheaper alternative to individual trim-
ming, at the expense of lower accuracy.

2.2. Circuit Implementation
The proposed temperature sensor is illustrated in Figure 1.
The right part of this circuit, comprising a voltage com-
parator, (transistors T13–21) creates the output signal of
the temperature sensor. The rest of this circuit consists
of the temperature sensing-circuit, amplifier, and start-
up. The input of the comparator consists of a differential
source-coupled stage, followed by two amplifying stages
and one digital inverter. To enable a certain temperature
detection, voltage comparator require two signals with dif-
ferent temperature dependence; an increasing PTAT volt-
age Vint across the resistor network NTR (Fig. 2) and
decreasing PTAT voltage Vinr at the comparator positive
input generates temperature decisions (Fig. 3). The resis-
tors are formed by p+ poly resistances, which have min-
imum process variation and temperature coefficient in the
given foundry’s CMOS process.
The (nominally) zero temperature coefficient is ex-

ploited for a temperature-independent bangap-reference
generation. In a bandgap voltage reference (Fig. 4),
an amplified version of �Vbe is added to Vbe to yield a
temperature-independent reference voltage Vref . The nega-
tive voltage-temperature gradient of the base-emitter junc-
tion of the transistor Q1 is compensated by a PTAT voltage
across the resistor R1, thereby creating an almost constant
reference voltage Vref . The bandgap reference voltage is
obtained at the output of the amplifier (rather than at its
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Fig. 1. Temperature sensor10-schematic view.

input). The PTAT voltage is firstly converted into current
through transistor T22 and then summed up to lower refer-
ence voltage through resistor R2. However, the curvature of
Vbe (of transistors Q1–2� will also be present in the bandgap
reference voltage.17 For a current, which is independent
of temperature, the curvature correction is in the same
order of magnitude of mismatch. The first-order tempera-
ture compensation of bandgap reference voltage involves
the cancellation of the temperature term by using the PTAT
voltage. The second-order temperature compensation is
curvature-compensated by adjusting the proportional-to-
absolute temperature-type spread on Vbe of a transistor Q3

with adjustable resistors NRR. In essence, based on the
ratio of the resistors NRR and R2, the Vbe of a junction
with a constant current is subtracted with the Vbe of a junc-
tion with the PTAT current. To accurately define this ratio,
adjustable resistors NRR are constructed of identical unit
resistors. The amplifier (T1–6) consists of a non-cascoded
OTA with positive feedback to increase the loop-gain. The
amplifier output voltage is relatively independent of the
supply voltage as its open-loop gain is sufficiently high.
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Fig. 2. NT R resistive network—schematic view.

Due to the asymmetries, the inaccuracy of the circuit is
mainly determined by the offset and flicker noise of the
amplifier, which directly adds to �Vbe. Several dynamic
compensation techniques such as auto-zeroing, chopping
or dynamic element matching18 might be employed to
decrease offset and flicker noise. However, inherently, such
techniques require very fast amplifier, whose noise is typi-
cally several order of magnitude larger and consumes con-
siderably more power. Furthermore, chopping increases
circuit complexity and adds switching noise due to e.g.,
charge dump and clock interference. Such characteristics
make these techniques unsuitable for thermal monitoring
of VLSI circuits. In this design, to lower the effect of off-
set to meet ± 1 �C accuracy, the systematic offset is mini-
mized by adjusting transistor dimensions and bias current
in the ratio, while the random offset is reduced by a sym-
metrical and compact layout. Additionally, the collector
currents of bipolar transistors Q1 and Q2 are rationed by
a pre-defined factor, e.g., transistors are multiple parallel
connections of unit devices. The amplifier has sufficient
gain to equalize its input voltages. Since these nodes are
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Fig. 3. UltraSparc T1 architecture floorplan.

the same, the currents from these nodes to ground must
be the same as well. The current through R1 is therefore
PTAT (this current is also flowing through the output tran-
sistor T22). A start-up circuit consisting of transistors T7–9
drives the circuit out of the degenerate bias point when the
supply is tuned on. The diode-connected device T9 pro-
vides a current path from the supply through T7 to ground
upon start-up.
The scan chain delivers a four-bit thermometer code for

the selection of the resistor value NTR. As illustrated in
Figure 2, the nodes in between each resistor have dif-
ferent voltages depending on their proximity to Vint. By
using thermometer decoding on the digital signal one spe-
cific node can be selected as the correct analog voltage.
The number of resistor elements determines the resolution
of the resistor-network; an n-bit network requires a lad-
der with 2n resistors. The resistor-ladder network is inher-
ently monotonic as long as the switching elements are
designed correctly. Similarly, since no high-speed opera-
tion is required, parasitic capacitors at a tap point will not
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Fig. 4. Sixteen selection levels in the temperature sensor.

create significant voltage glitch. A limit on resistor-value is
set by mismatches of individual resistors, which determine
the overall accuracy of the generated reference voltages.
Assuming that the resistor values are normally distributed
with mean R and standard deviation �R, the maximum
mismatch �R/R allowed for four-bit resolution is ≤ 17.6
percent.19

3. TEMPERATURE SENSOR PLACEMENT
Complex integrated circuits with large die area require
multiple thermal sensors to capture temperatures at a wide
range of locations as the unpredictability of a workload
leads to continuous migration of hot spots, and within-
die manufacturing variations lead to parameter variability
that further conceal the locations of the thermal hot spots.
However, the thermal sensors, together with their support
circuitry and wiring, complicate the design process and
increase the total die area and manufacturing costs. Given
the limitations on the number of thermal sensors, it is nec-
essary to optimally place them near potential hot spot loca-
tions. In Ref. [20], a clustering algorithm is described that
computes the thermal sensor positions that best serve clus-
ters of potential hot spot locations. In Ref. [21], an optimal
sensor problem is computed as the unite-covering problem.
In Ref. [22], the unknown temperature at a particular loca-
tion is computed as a weighted combination of the known
measurements at other locations. Nevertheless, these tech-
niques may be ineffective if the accuracy or availability
of sensors measurements is in question. The size of the
grid improves the effectiveness of the sensor infrastruc-
ture in many cases; however, in others, the hotspots may
simply be located such that even a sizable grid of sensors
will be incapable of capturing the locations of significant
thermal events. In Ref. [23], the maximum distance from
the hotspot within which a sensor can be placed is based
on the assumption that the temperature decays exponen-
tially from a hotspot neglecting the effect of the location
and power consumptions of other power sources on the
temperature around a hotspot. In Ref. [24], a systematic
technique for thermal sensor allocation and placement in
microprocessors is introduced, which identifies an optimal
physical location for each sensor such that steep thermal
gradient is maximized. Nevertheless, this approach does
not consider the accuracy of the sensors and does not guar-
antee the maximum error in the thermal sensor readings.
To minimize these errors, we have developed off-line

optimization technique based on cutting plane method.25

We find the optimum number of sensors and their locations
such that there is at least one sensor in the observable set
of each point of interest. This guarantees that the accuracy
requirements are satisfied since any sensor placed on a grid
cell in the observable set of a point of interest can sense
temperature with the required accuracy. The optimization
problem, given r iterations, is than formulated as to find
a set of potential sensor points L that minimizes the error
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E in the thermal sensor readings over the set of n points
of interests Q in the design space �, such that there will
be at least one sensor in observable set of hotspot given
bound �:

L= argmin
Q∈��E�

E�Q�

subject to Er�Qr�≥ 1−� ∀Q ∈��Er�

(1)

where Q= �q1	 q2	 
 
 
 	 qn� and E= �e1	 e2	 
 
 
 	 en� are the
set of n points of interests and the set of corresponding
desired accuracies for these points, respectively. A set of
potential sensor points L= �l1	 l2	 
 
 
 	 lk� consists of all of
the grid cells around the hotspots where a temperature sen-
sor can be placed. Let �(E� be the compact set of all valid
design variable vectors Q such that E�Q�= E. That � is
assumed to be compact is, for all practical purposes, no
real restriction when the problem has a finite minimum. If,
as an approximation, we restrict �(Er� to just the one-best
derivation of Er , then we obtain the structured perceptron
algorithm.26 As a consequence, given active constraints,
(1) can be effectively solved by a sequence of minimiza-
tions of the feasible region with iteratively-generated low-
dimensional subspaces.

3.1. Optimization Problem
To start the optimization problem, a design metric for
global solution is initially selected, based on the priority
given to the accuracy of the points of interests as opposed
to the performance function. In the algorithm, we use a
cutting plane method25 to repeatedly recomputed optimum
L with a precision of at least � and add it to a working
set Dr of derivations on which (1) is optimized. A new
L is added to the working set only if L > �; otherwise,
the algorithm terminates, e.g., we are cutting out the half-
space because we know that all such points have an objec-
tive value larger than �, hence can not be optimal. The
algorithm solves (1) restricted to Dr by sequential mini-
mal optimization,27 in which we repeatedly select a pair of
derivatives of Q and optimize their dual (Lagrange) vari-
ables, required to find the local maxima and minima of the
performance function. Although sequential minimal opti-
mization algorithm is guaranteed to converge, we used the
heuristics suggested by Ref. [28] to accelerate the rate of
convergence and to select feasibility region: one must vio-
late one of the conditions, and the other must allow the
objective to be improved. At the end of sequence, we aver-
age all the weight vectors obtained at each iteration, just
as in the averaged perceptron.

3.2. Parameter Update
To insure that the data is completely separable, we employ
stochastic steepest gradient descent method to adapt the
parameters. We map design variable vector Q to feature
vectors h�Q�, together with a vector of feature weights w,
which defines contribution of design variable in obtained

yield. Updating feature weights is presented as a quadratic
program

minimize 1/2�w′ −w�2
subject to Er�Qr�≥ 1−� ∀Q ∈��Er�

(2)

where  is a step size. The quadratic programming prob-
lem is solved incrementally, covering all the subsets of
classes constructing the optimal separating hyperplane for
the full data set. If no hyperplane can be found that can
divide the a priori and a posteriori classes, with the mod-
ified maximum margin technique29 we find a hyperplane
that separates the training set with a minimal number of
errors.

4. ADAPTIVE RUNTIME THERMAL
TRACKING

4.1. Thermal Model
The thermal behavior of complex deep-submicron VLSI
circuits is affected by various factors, such application
dependent localized heating. In addition, process variations
impact the total power consumption (by largely affect-
ing the leakage component) and, hence, the temperature
behavior of each chip, generating different thermal pro-
files. Power management techniques, such as local clock
gating, further create a disparity in power densities among
different regions on a chip. As a consequence, continuous
thermal monitoring is necessary to reduce thermal damage
and increase reliability. To model the thermal properties of
the deep-submicron VLSI, we use an off-line temperature
profile estimation methodology,30 which has the capability
to include layout geometry of individual circuit blocks in
a chip. The model is composed by three types of layers:
bulk silicon, active silicon and the heat-spreading copper
layer. The chip is partitioned into a mesh according to the
information provided by the layout geometry and power
distribution map. Nominal power distribution (including
switching and leakage power dissipation) for each func-
tional unit according to its activity factor is assigned an
initial value. Each functional unit in the floorplan is rep-
resented by one or more thermal cells of the silicon layer.
Physical parameters such as thermal conductivity and heat
transfer coefficient depend on specific packaging material
properties and applied cooling techniques. Boundary con-
ditions are determined by the operating environment. The
simulator uses layout geometry, power distribution, bound-
ary conditions, and physical thermal parameters as initial
values to formulate the system of partial differential equa-
tions (PDEs), which are approximated into a system of
ordinary differential equations (ODEs) with discontinuous
Galerkin method.
The thermal model is slightly nonlinear since coef-

ficients are temperature-dependent (relative error in the
order of 0.16%).31 To represent the thermal model using
a linear, time invariant discrete-time system, the solution
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of the differential equations modeling the heat flow inside
the MPSoC has been linearized. In the sequel we assume
that the kth temperature measurement is done at time tk.
The system can be represented with

T�k� = AT�k−1�+BP�k−1�+u�k−1�

S�k� = CT�k�
(3)

where at time k, P�k� is its input and S�k� is its output. The
temperature value of each cell is the state T ∈R2n. The first
n entries represent the cells composing the silicon floor-
plan and the remaining n entries model the copper layer.
The input of the system P ∈ Rp is the vector of power
inputs (heat sources as function of time, wherever they
exists). The output S ∈ Rs is the temperature observed by
the s on-chip thermal sensors placed in the silicon layer.
Matrices A	B	C and vector u describe the system and
model all geometric constraints among each entry of the
state vector and its placement on the chip floorplan. Matrix
A ∈R2n×2n expresses the part of the temperature spreading
process inside the chip that depends only on the current
temperature profile of the cells determined by the circuit
parameters. Matrix B ∈ R2n×p expresses the temperature
increase due to the input. The part of the system dynamic
that is not controllable by the input vector such as fabrica-
tion variability, supply voltage fluctuation, cross coupling
etc. is expressed by vector u ∈ R2n. Matrix C ∈ Bs×2n,
B = �0	1�, represents a selection matrix that models the
placement of a sensor on the silicon die identifies the sen-
sor grid cells at which temperatures are observable. We
are assuming that distinct measurements are coming from
distinct sensors: C has only one nonzero element per row.

4.2. Temperature Estimation
Several on-line techniques have been proposed to solve
the thermal tracking problem.10–16 Among these techniques
Kalman filter (KF) based methods generate thermal esti-
mates for all chip locations while countering sensor noise
and can be applied to real-time thermal tracking prob-
lems. The KF propagates the mean and covariance of the
probability density function of the model state in an opti-
mal (minimum mean square error) way in case of linear
dynamic systems. However, as VLSI fabrication technol-
ogy continues to scale down, leakage power can take up to
50% of the total chip power consumption.32 Note that leak-
age has the nonlinear nature that increase exponentially
with the chip temperature. As a consequence, the standard
Kalman filter tends to under-estimate the actual chip tem-
perature due to the assumed linear model. Consider (3) in
corresponding discrete-time state space

T�k� = AT�k−1�+B�PD�k−1�+PL�k−1��+u�k−1�

= AT�k−1�+B1/2�CLV
2
DDf +BK1T

2
�k−1�

× eK2/T�k−1� +u�k−1� = f �T�k−1��+u�k−1�

S�k� = h�T�k��+ z�k�

(4)

where u�k−1� ∼ N�0	R�k−1�� is the Gaussian process noise,
and z�k� ∼ N�0	U �k�) is the Gaussian sensor noise. For
clarity, we subdivided power P into two components,
dynamic power PD�k−1� and leakage power PL�k−1�. While
dynamic power consumption PD�k−1� = 1/2 ∝ CLV

2
DDf ,

where CL is switching capacitance, � is switching activity
of output node, VDD is supply voltage and f is the oper-
ation frequency of system, is weakly coupled with tem-
perature variation, static power consumption is a strong
function of temperature PL�k−1� = K1T

2
�k−1�e

�K2/T�k−1��,33

where K1 and K2 are design/technology and fixed supply
voltage constants, respectively. Due to unpredictability of
workloads (power vector is unknown until runtime) and
fabrication/environmental variabilities, the exact value of
T�k� at runtime is difficult to predict. To elevate the issue,
on-chip sensors provide an observation vector S�k�, which
is essentially a subset of T�k� plus sensor noise z�k�. In (4),
h�·� is a transformation function determined by the sen-
sor placement. Due to the sensors power/area overheads,
their number and placement are highly constrained. As a
consequence, the problem of tracking the entire thermal
profile (vector T�k�� based on only a few limited sensor
observations S�k� is rather complex.
To extend the model for the nonlinear leakage-

temperature function f �·�, the most common way of apply-
ing the KF is in the form of the extended Kalman filter
(EKF). In the EKF, the probability density function is
propagated through a linear approximation of the system
around the operating point at each time instant. These
approximations, however, can introduce large errors in the
true posterior mean and covariance of the transformed
(Gaussian) random variable, which may lead to sub-optimal
performance and sometimes divergence of the filter. The
advantage of EKF over the other non-linear filtering meth-
ods is its relative simplicity compared to its performance.
However, as EKF is based on a local linear approxima-
tion, it will have limited applicability in thermal tracking
problems with considerable nonlinearities. Also the filter-
ing model is restricted in the sense that only Gaussian
noise processes are allowed and thus the model can-
not contain, for example, discrete valued random vari-
ables. The Gaussian restriction also prevents handling
of hierarchical models or other models where signifi-
cantly non-Gaussian distribution models would be needed.
To overcome these limitations, we employ the unscented
Kalman filter (UKF).34	35 The UKF is using the statisti-
cal linearization technique to linearize a nonlinear function
of a random variable through linear regression between k
data points drawn from a priori distribution of the random
variable. Since we are considering the spread of random
variable, the unscented transform is able to capture the
higher order moments caused by the non-linear transform
better than the EKF Taylor series based approximations.34

The mean and covariance of the transformed ensemble
can then be computed as the estimate of the nonlinear
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transformation of the original distribution. The UKF out-
performs the EKF in terms of prediction and estimation
error, at an equal computational complexity for general
state-space problems.35 Additionally, the UKF can eas-
ily be extended to filter possible power estimation noises,
restricting the influence of the high frequency component
in power change on the modeling approach.

5. EXPERIMENTAL RESULTS
5.1. Experimental Setup
The chip architecture determines the complexity of pro-
cessing versus storage versus communication elements and
thus the thermal peak of these elements. A chip with com-
plex processing elements (e.g., wide-issue, multi-threaded)
will require larger storage elements (e.g., large multi-level
caches, register files) as well as sophisticated communica-
tion elements (e.g., multi-level, wide buses, networks with
wide link channels, deeply-pipelined routers and signifi-
cant router buffering). On the other extreme, there are chip
architectures where processing elements are single ALUs
serviced by a few registers at ALU input/output ports,
interconnected with simple single-stage routers with lit-
tle buffering. Application characteristics dictate how these
elements are utilized, and hence influencing the thermal
profile of the chip. In this paper, as a platform for ana-
lyzing the absolute and relative thermal impact of all
components of a chip, we use an architecture resembling
UltraSparc T 1 architecture36 (Fig. 3). The experiments
were executed on a 64-bit Linux server with two quad-
core Intel Xeon 2.5 Ghz CPUs and 16 GB main memory.
Values regarding thermal resistance, silicon thickness, and
copper layer thickness have been derived from36 and its
floorplan and power/area distribution ratio of each element
from Ref. [37], respectively. BasicMath application from
the MiBench benchmark38 is selected and run on datasets
provided by Ref. [39]. Switching activities were obtained
utilizing SimpleScalar.40 The calculation was performed in
a numerical computing environment.41

5.2. Temperature Sensor Performance
The stand-alone sensor occupies an area of 0.05 mm2

operates within 1.0 V–1.8 V range and dissipates 11 �W.
In the test silicon, four bits for a sixteen selection lev-
els are chosen for the temperature settings, resulting in a
temperature range from 0 �C–160 �C in steps of 9 �C,
which is sufficient for thermal monitoring of VLSI cir-
cuits (Fig. 4). Simulated bandgap reference voltage ver-
sus temperature is illustrated in Figure 5. If more steps
are required, a selection NTR can be easily extended with
higher resolution resistive network. For the robustness, the
circuit is completely balanced and matched both in the lay-
out and in the bias conditions of devices, cancelling all dis-
turbances and non-idealities to the first order. A summary
of the sensor performance and comparison with recently
published works is shown in Table I. Measurements have
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Fig. 5. Bandgap reference voltage: nominal, fast–fast and slow–slow
process corners.

been performed on 45 samples from 2 different batches.
All chips are functional in a temperature range between
0 �C and 160 �C. The average error at room temperature
is around 0.5 �C, with a standard deviation of less than
0.4 �C, which matches the expected error of 0.4 �C within
a batch. Non-linearity is approximately 0.4 �C from 0 �C
to 160 �C. The intrinsic base-emitter voltage non-linearity
in the bandgap reference is limited by compensation cir-
cuit. The measured noise level is lower than 0.05 �C.

In all-digital temperature sensors,5	45 the two-
temperature-point calibration is required in every sensor;
thus, calibration cost is very large in on-chip thermal
sensing applications. A current-output temperature sensor6

does not have a linear temperature reading and is sensitive
to process variation, which requires more effort and cost
for after-process calibration. Although the dual-DLL-based
temperature sensor44 only needs one-temperature-point
calibration, it occupies large chip area with a high level
of power consumption at a microwatt level. The sensors
based on the temperature characteristics of parasitic bipo-
lar transistors42	43 offer high accuracy and small chip area.
However, high power consumption in Ref. [42] and small
temperature range in Ref. [43] make these realizations
unsuitable for on-chip thermal monitoring.

5.3. Temperature Tracking
Based on (4), we simulated the thermal profile of the test
processor for a total duration of 600 seconds (the simu-
lation starts at room temperature). This is assumed to be
the real chip temperature and is used to measure estima-
tion accuracy. We examine the mean absolute error and
the standard deviation of the error as the location of inter-
est. These values are averaged over all the locations of
interest. Results of the optimization algorithm in (1) are
shown in Table II as measurement errors. Accuracy is lim-
ited due to the variable workload and placing restrictions
such as additional channels for routing and input/output.
We compare the accuracy of our UKF approach to that of
the Kalman filter10 and extended Kalman filter.11 Due to
the inaccuracy of its linear model, the standard Kalman

J. Low Power Electron. 9, 1–11, 2013 7



Adaptive Thermal Monitoring of Deep-Submicron CMOS VLSI Circuits Zjajo et al.

Table I. Summary of the temperature sensor performance and comparision with prior art.

�5� �6� �42� �43� �44� �45� [This work]

Range (�C) 0∼100 10∼100 −55∼125 temp switch 0∼100 0∼100 0∼160
Supply voltage (V) 3.0∼3.8 5 2.5∼5.5 1.0∼1.8 1
2 1
0 1.0∼1.8
Inaccuracy (�C) −0.7∼+0
9 ± 1 ± 0.1 ± 1.1 −1.8∼+2
3 ± 10.0 ± 0.9
Sensor type Temp-to-pulse Analog current �Vbe �Vbe Duall-DLL Temp-to-pulse �Vbe

Calibration Two-points – One-point – One-point Autocalibration –
Power (�W) 490 300 247 13 12000 55 11
Area (mm2� 0
175 0
023 0
16 0
03 0
16 0
01 0
05

Table II. Error statistics for limited number of sensors.

Sensor placing KF10 EKF11 UKF

Estimation errors (�C) Estimation errors (�C) Estimation errors (�C) Estimation errors (�C)

# Sensors Error (�� Error (�� Error (�� Error (�� Error (�� Error (�� Error (�� Error (��

2 3.06 3.37 2.57 3.43 1.35 2.37 0.38 0.54
3 2.88 3.01 2.65 2.86 1.41 2.44 0.26 0.67
4 2.44 2.72 2.74 2.56 1.38 1.94 0.33 0.94
5 2.18 2.31 2.57 2.34 1.21 1.64 0.26 0.84
6 1.84 2.02 2.24 2.94 1.24 1.86 0.32 0.56

filter relies excessively on the accuracy of sensor input.
The temperature estimates derived from the Kalman filter
are non-anticipative in the sense that they are only condi-
tional to sensor measurements obtained before and at the
time step n. The EKF approximate the nonlinearities with
linear or quadratic functions or explicitly approximate the
filtering distributions by Gaussian distributions. In UKF,
the unscented transform is used for approximating the evo-
lution of Gaussian distribution in non-linear transforms.
Figure 6 illustrate that the UKF method always keep track
of the actual temperature with high accuracy. For clarity,
we only depicted UKF tracking.
High precision of temperature tracking (within 0.4 �C for

mean and 1.0 �C for standard deviation) for various cases,
ranging from one to six sensors, respectively, placed at an
arbitrary location around the hotspot, is shown in Table II.
As expected, with increased number of sensors, the mea-
surement error decreases. The UKF obtain almost identical
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Fig. 6. Sensor measurements, actual and estimated temperatures.

accuracy significantly outperforming KF and EKF, espe-
cially when the number of sensors is small. Note that 1 �C
accuracy translates to 2 W power savings.46 The average
error in Table III (across all chip locations) of each method
is reported as we vary the sensor noise level. As we increase
the noise level, the estimation accuracy generated by KF
and EKF degrades more rapidly in contrast to UKF, which
generate accurate thermal estimates (within 0.7 �C) under
all circumstances. The improved performance of the UKF
compared to the EKF is due to two factors, namely, the
increased time-update accuracy and the improved covari-
ance accuracy. In the UKF case, the covariance estima-
tion is very accurate, which results in a different Kalman
gains in the measurement-calibration equation and hence
the efficiency of the measurement-calibration step. The
EKF also formally requires the measurement model and
dynamic model functions to be differentiable. Even when
the Jacobian matrices exist and could be computed, the
actual computation and programming of Jacobian matri-
ces is error prone and hard to debug. On the other hand,
UKF is not based on local linear approximation; UKF uti-
lizes a bit further points in approximating the non-linearity.
The computational load increases when moving from the
EKF to the UKF if the Jacobians are computed analyti-
cally (the average runtime of EKF versus UKF is approx-
imately 12 ms and 16 ms for one measurement, respec-
tively). However, for higher order systems, the Jacobians
for the EKF are computed using finite differences. In this
case the computational load for the UKF is comparable to
the EKF. Effectively, the EKF builds up an approximation
to the expected Hessian by taking outer products of the
gradient. The UKF, however, provide a more accurate esti-
mate through direct approximation of the expectation of the
Hessian. Note that another distinct advantage of the UKF
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Table III. Error statistics for different noise settings.

Sensor placing KF10 EKF11 UKF

Estimation errors (�C) Estimation errors (�C) Estimation errors (�C) Estimation errors (�C)

# Sensors Error (�� Error (�� Error (�� Error (�� Error (�� Error (�� Error (�� Error (��

2.5 2.53 2.86 2.94 3.36 1.46 2.27 0.26 0.57
5.0 4.94 4.47 3.26 4.24 1.85 2.64 0.33 0.69
7.5 6.63 5.55 5.68 5.97 2.11 2.86 0.47 0.66
10.0 7.86 8.13 6.33 7.65 2.69 3.26 0.46 0.73

occurs when either the architecture or error metric is such
that differentiation with respect to the parameters is not eas-
ily derived as necessary in the EKF. The UKF effectively
evaluates both the Jacobian and Hessian precisely through
its sigma point propagation, without the need to perform
any analytic differentiation.

6. CONCLUSION
Accurate temperature estimation is one of the foremost
steps in the evaluation of successful high-performance sys-
tem on chip designs. The feasibility of a high accuracy,
adaptive temperature sensor has been verified by experi-
mental measurements from the silicon prototype. The stand
alone sensor occupies a small silicon area of 0.05 mm2,
operates at 1.0 V–1.8 V supply voltage in a temperature
range from 0 �C–160 �C and dissipates only 11 �W. With
proposed optimization technique based on cutting plane
method, we find the optimum number of sensors and their
locations such that there is at least one sensor in the observ-
able set of each point of interest. Furthermore, to improve
thermal management efficiency we present methodology
based on unscented Kalman filter for accurate tempera-
ture estimation at all chip locations while simultaneously
countering sensor noise. As the results indicate, the pro-
posed method generates accurate thermal estimates (within
1.0 �C) under all examined circumstances. In comparison
with KF and EKF, the UKF consistently achieves a better
level of accuracy at limited costs.
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