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Abstract— A novel digital technique for efficient calibration of 
static errors in high-speed, high-resolution, multi-step ADCs is 
proposed. The parameter update within the calibration method is 
extended to include and correct effects of temperature and 
process variations. Additionally, to guide the verification process 
with the information obtained through monitoring pr ocess 
variations, expectation-maximization method is employed. The 
algorithm is evaluated on a prototype multi-step ADC converter 
with embedded dedicated sensors fabricated in standard single 
poly, six metal 0.09-µm CMOS. 
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I.  INTRODUCTION  

The static parameters of the multi-step A/D converter are 
determined by the analog errors in various A/D converter 
components and therefore, a major challenge in A/D converter 
calibration is to estimate the contribution of those individual 
errors to the overall A/D converter linearity parameters. The 
observation of important design and technology parameters, 
such as temperature, threshold voltage, etc., is enhanced with 
dedicated sensors embedded within the functional cores [1]. 
The steps causing discontinuities in the A/D converter’s stage 
transfer functions can be analyzed, minimized or corrected 
with a wide variety of calibration techniques [2]-[4]. The 
mismatch and error attached to each step can either be 
averaged out, or their magnitude can be measured and 
corrected. In general, most of the calibration methods require 
that a reference signal is available in the digital domain, this 
being the signal that the actual stage output of the A/D 
converter is compared with. This reference signal is in the 
ideal case a perfect, infinite resolution, sampled version of the 
signal applied to the A/D converter under test. Nevertheless, in 
a practical situation, the reference signal must be estimated in 
some way. This can be accomplished by incorporating 
auxiliary devices such as a reference A/D converter, sampling 
the same signal as the A/D converter under test [2], or a D/A 
converter feeding a digitally generated signal to the A/D 
converter under test [3].  

In this paper, such an A/D converter is augmented with 
dedicated sensors embedded within the converter to 
supplement the circuit calibration and to guide the verification 
process with the information obtained through monitoring 
process. As the number of on-chip sensors is finite due to area 
limitations, additional informations are obtained through the 
imputation method and its special case, multiple imputations 
based on expectation-maximization (EM) algorithm [5], which 
simultaneously minimizes the empirical classification error 

and maximizes the geometric margin. Furthermore, the 
proposed design-for-test (DfT) capabilities offer possibilities 
to estimate the reference signal for each individual stage by 
applying the steepest-descent processing method [6] to the 
output of the observed A/D converter. Additionally, in the 
proposed method the overlap between the conversion ranges 
of two stages is considered to avoid conflicting operational 
situations that can either mask faults or give an incorrect 
interpretation. 

II.  CALIBRATION ALGORITHM 

Even though extensive research [7]-[10] has been done to 
estimate the various errors in different A/D converter 
architectures, the use of DfT and dedicated sensors for the 
analysis of multi-step ADCs to update parameter estimates has 
been negligible. The influence of the architecture on analog-
to-digital converter modeling is investigated in [7], and in [8] 
with use of some additional sensor circuitry, pipeline A/D 
converter are evaluated in terms of their response to substrate 
noises globally existing in a chip. In [9], the differential 
nonlinearity test data is employed for fault location and 
identification of the analog components in the flash converter 
and in [10] is shown how a given calibration data set may be 
used to extract estimates of specific error performance.  

Functional fault in each of the analog component in the 
multi-step A/D converter affects the transfer function 
differently [9] and analyzing this property form the basis of 
our approach. The overall examined multi-step A/D converter 
consists primarily of non-critical low-power components, such 
as low-resolution quantizers, switches and open-loop 
amplifiers (Figure 1). In m+n+q multi-step A/D converter the 
m most significant bits are found from the first resistance 
ladder, the n mid bits are created in mid resistance ladder and 
the q least significant bits are generated from the third 
resistance ladder. Usually, the full range of the second 
resistance ladder is longer than one step in the first ladder. 
With this over-range compensation in the second ladder (e.g. 
similar principle is applicable to the third ladder as well) the 
static errors can be corrected since the signal still lies in the 
range of the second ladder. This means that the output of the 
A/D converter is redundant and it is not possible, from the 
digital output, to find the values from each subranging step 
without employing dedicated DfT. To set the inputs of the 
individual A/D converter stages at the wanted values, a scan-
chain is available in the switch-matrix circuit. For mid-range 
A/D converter measurements, the coarse A/D converter values 
are prearranged since they determine mid-range A/D converter 



references, and similarly to evaluate the fine A/D converter 
both coarse and mid A/D converters decisions are set to 
predetermined value. The response of each of the individual 
A/D converter stages is subsequently routed to the test bus. 
The sub-D/A converter (implemented as a combination of the 
reference ladder and the switch matrix) settings are controlled 
by serial shift of data through a scan chain that connects all 
sub-D/A converter registers in serial. To capture the current 
settings of the sub-D/A converter, it is possible to freeze the 
contents of the sub-D/A converter registers in normal mode 
and shift out the data via the scan-chain. A test control bit per 
sub-D/A converter is available to adjust (increase) the 
reference current to obtain an optimal fit of sub-D/A converter 
output range to the A/D converter input range.  
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Figure 1: Block diagram of the 12-bit multi-step A/D converter.  

Although a multi-step A/D converter makes use of 
considerable amount of digital logic, most of its signal-
processing functions are executed in the analog domain. The 
conversion process therefore is susceptible to analog circuit 
and device impairments. If timing errors are not considered, 
the primary error sources present in a multi-step A/D 
converter are systematic decision stage offset errors (λ), stage 
gain errors (η), and errors in the internal reference voltages 
(γ). To facilitate the measurement of these fluctuations, the 
evaluation strategy as depicted in Figure 2 is proposed.  
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Figure 2: Conceptual view of the calibration loop. 

The algorithm inputs are A/D converter measurement data, 
outputs of die-level process monitor (DLPM) circuits and 
temperature sensors and references needed to make a decision. 
The algorithm gives required information to the digital signal 
generator, whose outputs steer the sub-D/A converter, thereby 
closing the calibration loop. The DLPM measurements are 
directly related to asymmetries between the branches 

composing the circuit; for all primary error sources, we derive 
separate DLPMs by extracting (replicating) the targeted error 
contributor. Statistical data extracted through the die-level 
process monitor measurements provide the estimates 
(W’)T=[ η’,γ’,λ’]  with an initial value. It is important to note 
that because of the imbalanced utilization and diversity of 
circuitry at different sections of an integrated circuit, 
temperature can vary significantly from one die area to 
another and that these fluctuations in the die temperature 
influence the device characteristics thereby altering the 
performance of integrated circuits. In the implemented system, 
the temperature sensor [11] registers any on-chip temperature 
changes, and, if required, updates the estimation algorithm. 
The procedure to calibrate the entire multi-step A/D converter 
starts firstly from stage i to find the residue voltage Vi+1 from 
back-end A/D converter output. Next, the stage input Vi based 
on the algorithm output Vi+1 is recovered and at the end, first 
two steps to calibrate stage i-1 are repeated until the first stage 
is reached. The calibration state machine controls the 
reference voltage switching in the D/A converters of the first 
two stages during the calibration hold phases. During normal 
operation calibration coding is simply the addition of two 
coefficients, which are selected according to the raw bits of 
the two first stages, to each un-calibrated A/D converter 
output word. 

Calibration Algorithm 

Initialization 
- Initialize the input vector Din(0) 
- Force the inputs and collect the desired output Dout(0) 
- Measure and set the initial value of the weights W’(0) 
- Initialize the steepest descent update step µ=1 
- Initialize the forgetting factor ζ 
Data collection 
- Collect N samples from the DLPM and temperature sensors  
- Collect N samples from the AD converter 
Update parameter estimate 
1. Update the input vector Din(t+1) based on current available W(t) 
2. Calculate the error estimate W’(t) 
3. Generate the output estimate D’ out(t)= D in(t)×W’(t) 
4. Calculate the estimation error e(t) = D’out(t)-Dout(t) 
5. Calculate the error estimate W’(t+1)= W’(t)-µ× D in(t)×e(t) 
6. If W’(t+1)> W’(t) decrease step size µ and repeat step 5 
7. Increase the iteration index, t and repeat steps 1-6 for best estimate 
8. If temperature changes update Wl’ with new estimate W’  

III.  ALGORITHM FOR PROCESS VARIATION MONITORING 

Given the observation vector of the sensor’s observations 
xi∈ X, the estimation of an unknown parameter vector θ∈Θ 
designating true values of die-level process parameter 
variation would be relatively an easy task if the missing data 
vector yi∈Y, assumed to be realizations of the random 
variables which are independent and identically distributed 
according to the probability pXY|Θ(x,y|θ), were also available. 
In this sense, the maximum likelihood (ML) estimation 
involves estimation of θ for which the observed data is the 
most likely, e.g. marginal probability pX|Θ(x|θ) is a maximum, 
where pX|Θ(x|θ) is the Gaussian mixture model given by the 
weighted sum of the Gaussian distributions. The parameters θ 
involve parameters (µy,Σy), y∈Y of Gaussian components and 



the values of the discrete distribution pY|Θ(y|θ), y∈Y. The 
logarithm of the probability p(TX|θ) is referred to as the log-
likehood L(θ|TX) of θ with respect to the input set 
TX={(x1,…,xl)}, which contains only vectors of sensor’s 
observations xi. Obtaining optimum estimates through ML 
method thus involves two steps: computing the likelihood 
function and maximization over the set of all admissible 
sequences. To evaluate the contribution of the random 
parameter θ, analysis of the likelihood function requires 
computing an expectation over the joint statistics of the 
random parameter vector, a task that is analytically intractable. 
Even if the likelihood function can be obtained analytically off 
line, however, it is invariably a nonlinear function of θ, which 
makes the maximization step (which must be performed in 
real time) computationally infeasible. In such cases, the 
expectation-maximization algorithm provides a solution, albeit 
iterative, to the ML estimation problem. If some observations 
are missing, the algorithm allows obtaining the maximum 
likelihood estimates of the unknown parameters by a 
computational procedure which iterates, until convergence, 
between two steps. At each step of the EM iteration, the 
likelihood function can be shown to be non-decreasing [12]; if 
it is also bounded (which is mostly the case in practice), then 
the algorithm converges. In [13] is proved that an iterative 
maximization of Q(θ|θ(t)) will lead to a maximum likelihood 
estimation of θ. For a broad class of probability density 
functions, including Gaussian mixture densities, at each 
iteration the new parameter estimate θ can be explicitly solved 
as the stationary point corresponding to the unique maximum 
of Q(θ|θ(t))[12].  

 

EM Algorithm 

Initialization 
- Initialize the data set TXY={(x1, y1),…,(xl, yl)}  
- Initialize the parameter θ(0) 
Data collection 
- Collect N samples from the DLPMs 
Update parameter estimate 
1. Calculate Q(θ|θ(n))=E(log p(X,Y| θ)X, θ(n))                    – E step 

2. Re-estimate θ by maximizing the θ-function  
  θ(n+1)=argmaxθ Q(θ|θ(n)), estimate mean and variance    – M step 
3. Increase the iteration index, n  
4. Stop when a stationary point L(θ(n-1)|TXY)=L(θ(n)|TXY) is found. 

IV.  EXPERIMENTAL RESULTS 

The prototype of the multi-step A/D converter with 
dedicated embedded sensors was fabricated in standard single 
poly, six metal 0.09-µm CMOS. The core area is 0.6 mm2

 

excluding bond pads. The A/D converter operates at 1.2 V 
supply voltage and dissipates 85 mW (without output buffers). 
In Figure 3 a micrograph of the test-chip is presented. 
Dedicated embedded sensors and the complete DfT occupy 
less than 10% of the overall area. Additionally, the test-chip 
contains a temperature sensor (located between coarse A/D 
converter and fine residue amplifiers) and matrix of one 
hundred and forty differential transistor pairs and ladder 
resistors divided into specific groups, which are placed in and 
around the partitioned multi-step A/D converter. Digital 

correction is at the lower right corner of the active area; and 
twelve bit output is produced at the pads on the bottom. The 
differential circuit topology is used throughout the design and 
multiple substrate taps are placed close to the noise sensitive 
circuits to avoid the noise injection. Repetitive single die-level 
process monitor measurements for each group of monitors are 
performed to minimize noise errors. Since the different 
transistors are measured sequentially the dc repeatability of 
the dc gate voltage source must be larger than the smallest 
gate-voltage offset to be measured. The repeatability of the 
source in measurement set-up was better than six digits, which 
are more than sufficient. The mixtures of Gaussians are 
initialized by applying the EM equations to the observed 
mixtures of two univariate Gaussian components based on die-
level process monitors and coarse A/D converter DNL 
measurements. Each iteration is guaranteed to increase the 
likelihood, and finally the algorithm converges to a local 
maximum of the likelihood function in less than fifty iterations 
for the mean µ and a hundred and twenty for the variance σ, 
respectively. 

 

 
 

Figure 3: Chip micrograph 

The calibration technique was verified in all stages with full 
scale inputs. If the analog input to the calibrated A/D 
converter is such that the code transition is i, then the code 
transition of the ideal A/D converter is either i or i+1. The 
offset between the digital outputs of these two converters for 
the range of analog inputs is denoted ∆i1 and ∆i2, respectively. 
If a calibrated A/D converter have no errors in the internal 
reference voltages γ and stage gain errors η, the difference 
between calibrated and ideal A/D converter outputs is constant 
regardless of the analog input, thus ∆i1= ∆i2. If errors in the 
internal reference voltages γ and stage gain errors η are 
included, calibrated A/D converter incurs unique missing 
codes. The difference between ∆i1 and ∆i2 precisely gives the 
error due to missing codes that occurs when ideal A/D 
converter changes from i to i+1 . In a similar manner the 
unique error due to missing codes at all other transitions can 
be measured for calibrated A/D converter. With the errors 
from missing codes at each transition measured, calibrated 
A/D converter stage is corrected by shifting converter’s digital 
output as a function of the transition points such that overall 
transfer function of calibrated A/D converter is free from 
missing codes. As long as the input is sufficiently rapid to 
generate a sufficient number of estimates of ∆i1, ∆i2, for all i, 
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there is no constraint on the shape of the input signal to the 
A/D converter. Constant offset between calibrated and ideal 
A/D converter appears as a common-mode shift in both ∆i1 
and ∆i2.Since the number of missing codes at each code 
transition is measured by subtracting ∆i2 from ∆i1, the common 
mode is eliminated and thus input-referred offsets of 
calibrated A/D converter have no impact in the calibration 
scheme (under the practical assumption that the offsets are not 
large enough to saturate the output of the converter stages).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Figure 4: top), INL curve before calibration. The INL is mainly caused by the 
ladder non-linearity. Errors affecting the reference divider introduce transition 
position errors since the transitions do not coincide with the range of the next 
stage; bottom), INL curve after calibration. 

The largest correction values significantly decrease with the 
amount of samples. To account for an overall internal 
reference voltages γ, stage gain errors η and systematic offset 
λ, the algorithm provides the estimates with the final values 
(W’)T=[ γ’,η’,λ’] . As ideal A/D converter offers an ideal 
reference for calibrated A/D converter, the error signal used 
for the algorithm adaptation (which is formed by the 
difference of the two A/D converter outputs) is highly 
correlated with the error between them, thus steady state 
convergence of occurs within a relatively short time interval. 
At first, µ was set to 1/4 to speed up the algorithm, and then µ 
equal to 1/64 after 1000 iteration times to improve the 
accuracy. The advantage of the proposed method is that it 
gives unbiased estimates, so that the estimation accuracy can 
be made arbitrarily good by increasing the amount of 
estimation data. Although the accuracy increase quite slowly 
with the amount of data, evaluated A/D converter, however, 
use very high sample rates (above 50 MS/s) so some million 
samples are collected in less than second. The peak 

improvement is ±0.2 LSB for DNL measurement and ±2.9 
LSB for INL (Figure 4). The calibration algorithm operates in 
all process corners and has a temperature range from 0-150ºC 
with a resolution of 9ºC. Table 1 illustrates the measurement 
results for coarse, mid, fine and total A/D converter.  

 Coarse Mid Fine Total 

DNL ± 0.4 LSB ± 0.5 LSB ± 0.6 LSB ± 0.7 LSB 
INL ± 0.6 LSB ± 0.6 LSB ± 0.9 LSB ± 1.1 LSB 
THD -24.7 dB -26.1 dB -35.8 dB -73 dB 
SNR 28.3 dB 25.5 dB 37.4 dB 67 dB 

TABLE I – TEST RESULTS – MEAN VALUES 

V. CONCLUSION 

With the use of dedicated sensors, we facilitate early and 
fast identification of excessive process parameter variation 
effects at the cost of at maximum 10% area overhead. The 
flexibility of the concept allows the system to be easily 
extended with a variety of other performance sensors. The 
feasibility of the method for on-line and off-line calibration has 
been verified by experimental measurements from the Silicon 
prototype.  
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