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Abstract 
 
This paper reports a new recursive algorithm for efficient 
estimation of the noise content in time-domain noise 
analysis of non-linear dynamic integrated circuits with 
arbitrary excitations. Statistical simulation of specific 
circuit fabricated in 65 nm CMOS process shows that the 
proposed algorithm offers accurate and efficient solution.  
 
1. Introduction  
 

The steady increase in the number of systems based on 
mixed-technology designs, combined with the 
continuing trend in the decrease of their physical 
dimensions, is bringing renewed attention to algorithms 
[1], and correspondingly, CAD tools [2]-[4] capable of 
assessing circuit or system performance in the presence 
of noise. The noise performance of a circuit can be 
analyzed in terms of small-signal equivalent circuits by 
considering each of the uncorrelated noise sources in 
turn and separately computing their contribution at the 
output. Unfortunately, this method is only applicable to 
circuits with fixed operating points and is not appropriate 
for noise simulation of circuits with changing bias 
conditions, such as dynamic digital circuits and dynamic 
latch comparators. Additionally, in several applications 
the noise influences the system behavior in a nonlinear 
way such that linear noise analysis is no longer 
satisfactory and transient noise analysis, i.e., the 
simulation of noisy systems in the time domain, becomes 
necessary. 

In this paper, we treat the noise as a non-stationary 
stochastic process, and introduce an Itô system of 
stochastic differential equations (SDE) as a convenient 
way to represent such a process. In order to 
accommodate noise considerations with varying dc 
operating points, circuits have been analyzed in the time 
domain. A stochastic noise source is associated with each 
of the circuit elements, generating a stochastic noise 
current for the associated element. This stochastic noise 
current represents a stochastic random process 
comprised of a white noise source scaled by the standard 
deviation of the physical noise process that exists within 
the associated element. Since sample data for such 
processes are available, we apply a discrete recursive 
algorithm to accurately estimate the noise content 
contribution for any particular node in the circuit.  

2. Discrete Recursive Algorithm  
 

In general, for time-domain analysis, modified nodal 
analysis (MNA) leads to a nonlinear ordinary differential 
equation (ODE) or differential algebraic equation (DAE) 
system that, in most cases, is transformed into a 
nonlinear algebraic system by means of linear multistep 
integration methods [5] and, at each integration step, a 
Newton-like method is used to solve this nonlinear 
algebraic system. Therefore, from a numerical point of 
view, the equations modeling a dynamic circuit are 
transformed to equivalent linear equations at each 
iteration of the Newton method and at each time instant 
of the time-domain analysis. Consider MNA and circuits 
embedding, besides voltage-controlled elements, 
independent voltage sources, the remaining types of 
controlled sources and noise sources. Combining 
Kirchhoff’s Current law with the element characteristics 
yields a stochastic differential equation of the form 

( ', , ; ) ( , ; ) 0F x x t B x tθ θ λ+ ⋅ =      (1) 

where x is the vector of stochastic processes which 
represents the state variables (e.g. node voltages) of the 
circuit, θ is finite-dimensional parameter vector, λ is a 
vector of white Gaussian processes and B(x,t) is state and 
time dependent modulation for the vector of noise 
sources. Every column of B(x,t) corresponds to λ, and 
has normally either one or two nonzero entries. The rows 
correspond to either a node equation or a branch 
equation of an inductor or a voltage source.  

We will interpret (1) as an Itô system of stochastic 
differential equations 
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where we substituted dW(t)=χ(t)dt with a vector of 
Wiener process W. If the functions f(t) and g(t) are 
measurable and bounded on the time interval of interest, 
there exists a unique solution for every initial value λ(t0) 
[6], f:[0,+∞) × Rd × Θ → Rd and g: [0,+∞) × Rd × Θ → 
R

d×d are known functions depending on an unknown 
finite-dimensional parameter vector θ∈Θ. We assume 
that the initial value x0 is deterministic and that x0, x1, …, 
xn is a sequence of observations from the deterministic 
process X sampled at non-stochastic discrete time-points 
t0 < t1 < …< tn. Since X is Markovian, the maximum 
likelihood estimator (MLE) of θ can be calculated if the 



transition densities p(xt; xs, θ) of X are known, s<t. A 
simulated maximum likelihood approach is considered in 
[7]; here we suggest modifications with respect to the 
postulated algorithm and introduce this approach in the 
circuit simulation.  

Let p(ti, xi; (ti−1, xi−1), θ) be the transition density of xi 
starting from xi−1 and evolving to xi, then the maximum 
likelihood estimate of θ will be given by the value 
maximizing the function 
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with respect to θ. To evaluate the contribution of the 
parameter θ, analysis of the likelihood function requires 
computing an expectation over the random parameter 
vector. Even if the likelihood function can be obtained 
analytically off line, it is invariably a nonlinear function 
of θ, which makes the maximization steps (which must 
be performed in real time) computationally infeasible. 
The proposed algorithm provides a solution, albeit 
iterative, to such estimation problem:  

1. Consider the time interval [ti−1, ti] and divide it into 
M subintervals of length h = (ti-ti-1)/M: then (2) is 
integrated on this discretization by using a standard 
algorithm (e.g. Euler-Maruyama, Milstein) by taking xi-1 
at time ti-1 as the starting value, thus obtaining an 
approximation of X at ti. This integration is repeated R 
times, thereby generating R approximations of the X 
process at time ti starting from xi-1 at ti-1. We denote such 
values with Xti

1, …, Xti
R, i.e. Xti

r is the integrated value of 
(2) at ti starting from xi-1 at ti-1 in the rth simulation (r= 
1, …., R). 

2. The simulated values Xti
1, …, Xti

R are used to 
construct a kernel density estimate of the transition 
density p(ti, xi; (ti-1, xi-1), θ )  

1 1
1

1
( , ; , , ) i

rR
i tR

i i i i
ri i

x X
p t x t x K

Rh h
θ− −

=

 −
=   

 
∑    (4) 

where hi is the kernel bandwidth at time ti and K(.) is a 
suitable symmetric, non-negative kernel function. 
However, as the number of nodes in the observed circuit 
increase, the convergence rate of the estimator (4) to 
their asymptotic distribution deteriorates exponentially. 
As a consequence, unlike [7], for the circuits with large 
number of nodes, we construct an estimate of the 
transition density pR(ti, xi; (ti-1, xi-1), θ) by 
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where 
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φ(x; ., .) denoting the multivariate normal density at x 
and Σ(t,x;θ) = g(t,x;θ) g(t,x;θ)T, where T denotes 
transposition. 

3. The previous procedure is repeated for each xi and 
the pR(ti, xi; ti-1, xi-1, θ) to construct (3).  
4. In contrast to [7], we maximize LR(θ) with respect to θ 
to obtain the approximated MLE θR of θ. The correct 
construction of LR(.) requires that the Wiener increments, 
which once created, are kept fixed for a given 
optimization procedure. Notice that, for numerical 
reasons, it is normally more convenient to minimize the 
negative log-likelihood function 
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and the approximated MLE is given by θR = arg minθ 
−log(LR(θ)).  
 
3. Experimental Results 
 

All the experimental results are carried out on a single 
processor Linux system with Intel Core 2 Duo CPUs 
with 2.66 Ghz and 3 GB of memory. The effectiveness of 
the proposed approach was evaluated on several circuits 
exhibiting different distinctive features in a variety of 
applications. As a representative example of the results 
that can be obtained, we show noise characterization of 
the continuous-time biquad filter fabricated in standard 
65 nm CMOS technology [8] (Figure 1 and Figure 2). 
We assumed that the time series x are composed of a 
smoothly varying function, plus additive Gaussian white 
noise λ (Figure 3), and that at any point x can be 
represented by a low order polynomial. This is achieved 
by trimming off the tails of the distributions and then 
using percentiles to reverse the desired variance. The 
estimation method is based on the maximization of an 
approximation of the likelihood function. Thus, the 
obtained (approximated) maximum likelihood estimates 
θ

R of the freely varying parameters ̂θ θ⊆  are 
asymptotically normally distributed as n→∞ with mean 
θ̂  and variance given by the inverse of the expected 
Fisher information matrix [9]. The latter is often 
unknown, thus we considered the observed Fisher 
information in place of the expected Fisher information, 
since it often makes little difference numerically (e.g. 
[10]) (Figure 4). The observed Fisher information at θR is 
given by -H(θR), where H(θR) is the Hessian matrix of 
the log-likelihood function l(θR) computed using the 
central approximation. The noise variance estimation at 
the output of the filter is illustrated in Figure 5. For 
Gm1-Gm4, OTA1-2 and Opamp1-2, in comparison with 2000 
Spice Monte Carlo iterations, the difference is within 
1.1% for mean and 4.2%, 3.9%, 4.5%, 4.3% 3.4%, 3.7%, 
5.1% and 4.6% for variance, respectively, while 
achieving 16-fold cpu-time reduction (1241.7s vs 77.6 s). 
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Figure 1: Gm-C-OTA biquad filter [8]                 Figure 2: Prototype micrograph 

 
Contribution of each instance Gm1-Gm4, OTA1-2 and 

Opamp1-2, to the total filter noise is 29%, 10%, 14%, 
10%, 9%, 7%, 12% and 9%, respectively. The measured 
noise figure at the filter output node (measured across 25 
prototype samples) is within 5% of the simulated noise 
figure obtained as average noise power calculated over 
the periodic noise variance waveform.  
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Figure 3: Time series with additive Gaussian noise 
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Figure 4. Data () vs the empirical mean (solid line), the 95% 
confidence bands (dashed lines) and the first-third quartile 
(dotted lines) of (2) 
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Figure 5: Estimation of noise variance 

4. Conclusions 
 

Statistical simulation is one of the foremost steps in the 
evaluation of successful high-performance IC designs 
due to circuit noise which strongly affects device 
behavior in today’s deep submicron technologies. In this 
paper, an discrete recursive algorithm is proposed to 
accurately estimate noise contributions of individual 
electrical quantities. This makes it possible for the 
designer to evaluate the devices that most affect a 
particular performance, so that design efforts can be 
addressed to the most critical section of the circuit. As 
the results indicate, the suggested numerical method 
provides an accurate and efficient solution. 
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